
Research Tools for MIT App Inventor
Evan W. Patton

MIT CSAIL
Massachusetts Institute of Technology

Cambridge, MA, USA
ewpatton@mit.edu

Mark Sherman
Integrated Digital & Data Sciences

Emmanuel College
Boston, MA, USA

shermanm@emmanuel.edu

Michael Tissenbaum
College of Education

U. of Illinois at Urbana-Champaign
Champaign, IL, USA

miketissenbaum@gmail.com

Abstract
Understanding how ideas move through a classroom as stu-
dents explore, learn, and share their findings with other
students is important for computational thinking education.
We present a set of enhancements to MIT App Inventor to
enable fine-grained analysis of both qualitative and quantita-
tive data. Our framework combines real-time event streams,
project snapshots, and screen captures with audio record-
ing to allow for targeted queries around when components
or concepts not previously seen appear in a project. This
automated approach reduces the amount of time spent sift-
ing through data by providing researchers new tools for
performing analysis of App Inventor projects.

Keywords App Inventor, research tools, learning analytics,
instrumentation, computational thinking education

1 Introduction
Students learning a new topic can come by information in
many different ways. One such way in the classroom is
throughword of mouth from a teacher or peers. Tracking this
information can be difficult for conducting learning studies.
In this paper, we present a multimodal tracking mechanism
for MIT App Inventor that combines audio, video, observa-
tional, and fine-grained edit data streams to provide a new
research platform. We also introduce a new Python library
for performing queries over App Inventor projects to assist
with identifying when new concepts appear in a student’s
project.

2 Toolkit Overview
The suite of tools we have developed were designed to allow
for targeted questions about the development of an MIT App
Inventor project and to understand when and how concepts
are introduced to students, or when they discover such mech-
anisms through free exploration. The tools are multimodal,
combining different forms of logging with audio and video
streams, and a query mechanism for querying the structure
of the project code.

BLOCKS+, November 04, 2018, Boston, MA, USA
2018.

2.1 Project Snapshots
Fine-grained analysis of the student projects was afforded
by a Snapshot system that we integrated into MIT App In-
ventor. This system, based on [3], provided a capture of
the project’s full code state, recorded every time the stu-
dent made a change to the project- including component
and block additions/deletions, parameter changes, renaming,
block moving, and more. This system recorded the Designer,
Components, and all Blocks. This gave us the ability to scan
through the history of a project to detect interesting mo-
ments, such as when a relevant component was first added,
or a particular block was first recruited. The time stamps
of these moments could be used to cross-reference the au-
dio/video data, the in-classroom observations, or teacher
notes to determine what the context was like outside of the
screen. This allowed for a clearer picture of what the stu-
dent was experiencing in the classroom, and should allow us
to build models of what in-class experiences result in new
critical moments in code development.

2.2 Audio/Video Capture
At the beginning of each App Inventor session, a video plugin
called Screencastify was used to start a screen and audio
recording session, which were uploaded and stored on a
secure server. With the video recording, we could see where
the student focuses attention and with the audio we could
determine what information was being passed verbally off-
screen.

2.3 Observation Protocol
Observations were made by in-person researchers following
a protocol based on research around computational think-
ing [2] and collaborative open-ended tinkering [4]. The pro-
tocol aimed to capture students seeking and providing help,
asking questions, taking control of their or others’ comput-
ers, moving around the room, and other in-class interactions.
These observations were time-coded by the observer and can
be used in time-correlated analysis with the programmatic
data collected.

2.4 Real-time Event Server
Fine-grained analysis is also offered by building our research
platform on top of a version of MIT App Inventor with an
event-based edit model, originally built to support real-time

1



BLOCKS+, November 04, 2018, Boston, MA, USA Evan W. Patton, Mark Sherman, and Michael Tissenbaum

Listing 1. Detect procedures that do not have any callers.
AIAFile('sample.aia').blocks(

(type == procedures_callnoreturn) |

(type == procedures_callreturn) &

~is_called).select(fields.NAME)

Listing 2. Count the number of event blocks without a body.
AIAFile('sample.aia')

.blocks(type == component_event)

.filter (~ hasDescendant(lambda x:True))

.count()

editing of projects by students [1]. Every creation, move-
ment, and deletion of components and blocks are sent to a
centralized server where they are logged for further analysis.
This allows researchers to look at fine grained activities that
occur between server-side project save snapshots. This data
stream will replace the Project Snapshots in future works, as
it will be simpler to collect, while offering the same powers
of data capture. This event stream will also be available for
future real-time instrumentation applications.

2.5 Project Analysis Tools
We have developed a Python library, called AIATools, for
constructing declarative queries over App Inventor projects.1
AIATools parses Blockly XML files into objects over which it
can execute queries. An example query for detecting whether
a procedure call block exists for an undefined procedure is
shown in Listing 1. Additional support has been developed
to combine AIATools with the snapshot service to enable
querying changes to projects over time.

3 Discussion
The suite of tools we have presented allow for targeted re-
search queries about how people are using the App Inventor
platform. For example, a recent classroom evaluation of the
platform involved students working with Internet of Things
technology over Bluetooth low energy. This requires the use
of the BluetoothLE extension. Using AIATools applied to the
snapshots, we can detect when a student incorporates the
BluetoothLE extension into their project.With the timestamp
of the event, we can cross-reference with the audio/video
stream to determine what the student was hearing in the
classroom prior to introducing the extension.

4 Conclusion
We presented four extensions to the MIT App Inventor plat-
form to aid in computer science education research. These
extensions allow for fine grained pinpointing of when ideas
1https://github.com/mit-cml/aiatools

are introduced into the space and how they move between
students, and they bridge across multiple modalities to give
a more accurate picture of the available means by which
students receive and act on new information. We believe
that further development and refinement of such tools will
be beneficial to the learning sciences community, especially
as it pertains to computer science education research.

5 Future Work
While the AIATools library knows about App Inventor’s
semantics specifically, it can be extended to other languages
built on Blockly. Video recording was a surprisingly difficult
technical hurdle to overcome, and we plan to implement it
directly into App Inventor, as to not rely on the third-party
plugin. This will allow greater control and granularity over
the recordings, especially the ability to progressively send to
the server, which would improve reliability and performance.
We also plan to integrate analysis over the real-time data so
that queries can be answered over a stream, which would
allow for the development of sophisticated tools for real-
time analysis of student progress. All of these changes were
intended to make the data more robust and the platform
easier to deploy for research groups.

References
[1] X. Deng. 2017. Group collaboration with App Inventor. Master’s thesis.

Massachusetts Institute of Technology.
[2] S. Grover and R. Pea. 2013. Computational thinking in K–12: A review

of the state of the field. Educational Researcher 42, 1 (2013), 38–43.
[3] M. Sherman. 2017. Detecting Student Progress during Programming

Activities by Analyzing Edit Operations on their Blocks-Based Programs.
Ph.D. Dissertation. University of Massachusetts, Lowell.

[4] M. Tissenbaum, M. Berland, and L. Lyons. 2017. DCLM framework:
understanding collaboration in open-ended tabletop learning environ-
ments. International Journal of Computer-Supported Collaborative Learn-
ing 12, 1 (2017), 35–64.

2

https://github.com/mit-cml/aiatools

	Abstract
	1 Introduction
	2 Toolkit Overview
	2.1 Project Snapshots
	2.2 Audio/Video Capture
	2.3 Observation Protocol
	2.4 Real-time Event Server
	2.5 Project Analysis Tools

	3 Discussion
	4 Conclusion
	5 Future Work
	References

