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Abstract

Aptly aims to use large language models to allow for on-the-fly generation of full apps
given only an user description of an app idea. In order to optimize this platform and to pro-
vide guidance for other platforms or companies aiming to personalize large language models
(LLMs) for their needs, we embark on one of the first systematic studies of prompt engi-
neering for the Codex model, a LLM that produces code from a natural-language input.
Specifically, we examine the effect of varying the token length, mechanism of choosing exam-
ples (random selection, least to most token size, cosine similarity, or an adapted version of
Minimum Redundancy Maximum Relevance), and how they are ordered within the prompt
(highest to lowest ranked, lowest to highest ranked, randomly shuffled) on the quality of
generated code. We improve the pipeline’s performance from baseline for complex apps by
55% (0.10 increase in BLEU score) using example selection mechanisms and 43% (0.13) for
simple apps.

Summary

App creation should be accessible to everyone, regardless of technical expertise and
amount of time. The Aptly platform aims to make this ideal a reality by enabling near-
instantaneous generation of full apps given only an user description of an app idea. In order
to optimize Aptly’s abilities and tackle a broader question within the large language model
community about how to best construct inputs (prompts), we examine the effects of token
length, mechanism of choosing examples, and how examples are ordered within the prompt
on the quality of Codex’s outputs of app code through the construction of a three step
automated prompt creation pipeline. We find that these three characteristics affect the qual-
ity of the code produced by Codex. Further research is needed on prompt engineering for
code-generating large language models such as Codex.



1 Introduction

In an ideal world, anyone who has an idea for an app should be able to convert that idea

into a real app they can use and distribute. However, in the status quo, this transformation

of idea to app is often impeded by a lack of time and lack of technical expertise [1]. As a

result, there has been a continuous drive to tackle these barriers within the scientific and

industrial computer science community through the creation of “Low Code” or “No Code”

platforms that aim to reduce the amount of coding needed through techniques such as drag-

and-drop functionality and block coding to simplify the process of app creation [2]. Aptly,

a new No Code platform in development by the MIT App Inventor team, aims to take this

simplification of app creation one step further. The goal of Aptly is to take a user description

of an app and directly convert it into a full, working mobile app usable on Apple and Android

devices.

Aptly has the potential to further lower the barriers of time and technical experience

needed in the app creation process. Aptly’s interface is designed to be simple and intuitive,

as shown in Figure 1. Instead of the user needing to spend time implementing their idea and

debugging, the process of creating apps becomes nearly instantaneous. Additionally, Aptly

removes the necessity for knowing the technical details of coding and instead places the

emphasis on the logical thinking needed to describe an idea.

The Aptly platform uses Open AI’s Codex, a large language model that is able to generate

code from text-based prompts [3]. A prompt is generally composed of a natural language

description of a desired app to be created, which can also be preceded by a few examples

from which the large language model can learn from. The examples included in the prompt

are known as “few-shot” examples which aim to help Codex learn how to create the target

application, similar to how a student might learn how to do multiplication by learning

from example problems [4]. In past studies, adding few-shot examples to prompts has had
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Figure 1: A prototype of the Aptly platform

substantial success in improving Codex’s performance in completing user tasks [3, 5].

In order to improve Aptly’s ability to generate full, workable apps from a user query, we

examine techniques to optimize the generation of prompts on-the-fly from a user description

typed into the Aptly platform and sent to Codex to obtain a code output.

Specifically, we focus on three characteristics of the prompt:

1. Does the quality of code generation differ based on how examples are chosen?

2. Does increasing the number of tokens (units of semantic meaning in the prompt) sent

to Codex improve the quality of code generation?

3. Can we improve the quality of code generation by ordering the examples differently?

As optimization of prompts for Large Language Models, or prompt engineering, is a

relatively emerging area of machine learning research, this study is one of the first aiming to

examine the effects of varying the characteristics of prompts on generated output [6].

2 Methods

In order to generate prompts on the fly, we constructed a three-step automatic pipeline

that takes a user description and adds few-shot examples to formulate a complete prompt.
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Figure 2: Prompt Engineering Pipeline

Each of the steps corresponds to one of the three characteristics of the prompt that we sought

to optimize: how examples are chosen, how many tokens are in the prompt, and how the

chosen examples are ordered within the prompt. Each parameter that is examined is colored

in turquoise in Figure 2.

2.1 Data

A database of 85 unique app examples was compiled by the App Inventor team from

apps created on the App Inventor platform. The app examples were selected to cover a wide

range of the functionality within the App Inventor platform. These apps were converted

from a block-coding-based expression to an intermediate language named Aptly-Script whose

functions and classes have a one-to-one correspondence with App Inventor components (for

example, having a Text-to-Speech component with the same callable methods). A basic

description was also created for each app.
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2.2 Ranking Mechanism

The pipeline sorts the examples in the database to determine the order in which examples

are added to the prompt. We tested four different ways of doing this. First, we chose to

randomly rank examples as the baseline option.

Second, we ranked examples from those with the least amount of tokens to those with

the most amount of tokens. This option had the advantage of sending in the most examples

for Codex to learn from. However, the ranking of examples may not reflect what is the most

relevant to the requested description.

Third, we rank the examples based on how semantically relevant they are to the user

query. We do so by generating embeddings for each app example and the user description. An

embedding is a 2048-dimensional vector that represents the semantic meaning of a natural

language description or code file [7]. Codex’s Babbage engine was used to generate code

embeddings for each example app in the database [3].

To measure the semantic similarity between combinations of pieces of code and text

descriptions, the cosine of the angle between the vectors mapped in 2048-dimensional space

was taken (cosine similarity). More specifically, cosine similarity is calculated as follows:

cos(θxxx,yyy) =
xxx · yyy
||xxx||||yyy||

,

where xxx and yyy are vectors in the same dimensional space and output values close to 1

indicate high similarity. Examples were ranked from highest cosine similarity to lowest cosine

similarity.

Fourth, we rank the examples using a revised version of Maximum Relevancy Minimum

Redundancy (MRMR) [8]. MRMR is currently used in machine learning as a relatively effi-

cient way of reducing the amount of independent variables in a dataset such that information

about the dependent variable is maximized and correlation between selected variables is min-

imized [9]. In other words, the goal is to find the “minimal optimal” set of variables to predict
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the dependent variable.

The advantages of MRMR could be potentially useful in the task of few-shot learning

because some examples in a database may be duplicates or have similar functionality with

already chosen examples, meaning that they wouldn’t contain new information for Codex to

learn [8].

The original formula in MRMR for selecting the mth variable given a variable space of

X (set of all independent variables) and an already selected set Sm−1ofm− 1 variables is

Selection = max
xj∈X−Sm−1

I(xj; c)−
1

m− 1

∑
xi∈Sm−1

I(xj;xi)

 ,

where xj is the jth variable under evaluation, c is the target variable, xi is the ith feature

in Sm−1, and I(x; y) is the mutual information between x and y. Intuitively, this formula

rewards variables that maximize the information between itself and the target variable (rep-

resented in I(xj; c)) and penalizes variables with a high mutual information with the already

selected Sm−1 of features (represented by 1
m−1

∑
xi∈Sm−1

I(xj;xi) ).

To adapt MRMR to selecting code examples instead of selecting variables, we quantify

I(xj; c) as the cosine similarity between the embeddings of the user query and that of the

code example as similar semantics/functionality implies mutual information that Codex can

use for learning. Instead of the traditional MRMR schema of using a greedy approach to add

k total examples, we use a similar schema of adding examples given that the prompt does

not exceed token length T . This method is further discussed in Subsection 2.32.32.3.

2.3 Number of Tokens

After a ranking was generated, we varied the upperbound on the number of tokens in the

entire prompt (examples, their descriptions, user query) to be T = 300, 600, 9000, 1200, 1800,

5



2100. The number of tokens in a prompt was approximated using the Hugging Face GPT-

2 Tokenizer [10]. We implemented this behavior for random, size, and embeddings-based

rankings through recursively selecting the highest ranked example not yet chosen given that

the number of tokens in the prompt are ≤ T .

For MRMR, we used a greedy approach: first, we added the example with the highest

embeddings score and computed the total length in tokens of the example and user query.

Then, given that the total length was < T , the algorithm computed the relevance of the

remaining examples using the formula in Section 2.1.2. It subsequently selected the example

with highest relevance given that the length of the prompt including the new example is still

less than or equal to T tokens. For the next examples, the process repeats: the relevance is

calculated for all examples given an updated Sm−1 and given tokens < T the mth example

is chosen. This process is elaborated on in Algorithm 1Algorithm 1Algorithm 1.

2.4 Ordering of Examples

After examples are selected, they are ordered within the prompt. This is done in three

ways: highest ranking to lowest ranking (which we dub “top”), lowest ranking to highest

ranking (which we dub “bottom”), and random ordering (which we dub “random”). The

placement of an example in a prompt has been found to potentially change the emphasis

Codex places on the example within its few-shot learning process; a study about GPT-3,

the predecessor of Codex, found that examples placed closer to the end more heavily biased

generated results [11].

2.5 Sending the Prompt

Each chosen example is represented in the prompt in the following order: its textual

description, code, and a ’STOP’ token at the end of the code. The examples are added to
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Algorithm 1 Selecting the Most Relevant Examples Given Token Limit T

procedure Modified MRMR
examplearray← array of examples (description and Aptly-Script)
q← string of user query
sortedarray← sort(examplearray, cosinesimilarity(examplearray, q))
examplelen← length of sortedarray[0]
querylen← length of userquery
selected← [0]
tokenlength← examplelen + querylen
if examplelen + querylen > T then return []
end if
while tokenlength < T do

max← −∞
maxind← null
for ik ∈ Sm−1 do

relevance← MRMRrelevance(ik, q )
if relevance > max then

max← relevance.
maxterm← k.

end if
end for
if tokenlength + length(Sm−1[maxterm]) ≤ T then

selected.add(maxterm)
tokenlength← tokenlength + length(Sm−1[maxterm])

end if
end while
return selected

end procedure
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the prompt in the order specified in the previous step discussed in Section 2.4Section 2.4Section 2.4. At the end of

the prompt, the algorithm concatenates the user query to the prompt. Descriptions and the

query are enclosed within “% %” delimiters to indicate that they are not part of the code

to Codex. The prompt is sent to the ”code-davinci-002” Codex model. Hyper-parameters of

the model are set as the following: temperature = 0.5, max tokens = 4000−T , best of = 10.

2.6 Evaluation

Evaluation was done using a combination of manual and automatic metrics. The manual

evaluation was done on less data but was more precise while the automatic metric was done

on more data but was less optimal than human-performed evaluation. Through presenting

both metrics, we hoped to provide more context about the performance of our pipeline.

2.6.1 Automatic Evaluation

The prompt engineering pipeline was evaluated on a set of 18 example app descriptions.

These descriptions were designed such that they were plausible apps that a user could want

to make, such as simplified versions of the ELIZA chatbot, a language translation app, and

the video game Pong.

These test apps were also designed to vary in complexity and App Inventor component

usage: some perform relatively simple tasks such as playing a sound when a button is pressed

while others involve more complex computational thought and components such as a simpli-

fied version of Mafia which uses randomness, variables, lists, buttons, and labels as illustrated

in Figure 3.
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Figure 3: Examples ranged from short and less complex like ’Frog Button’ to more extensive
like ’Mafia’.

For each of these apps, the following combinations were tested:
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Method Tokens Order Testing

MRMR 1200 Top Method

Embeddings 1200 Top Method

Size 1200 Top Method

Random 1200 Top Method

MRMR 300 Top Token

MRMR 600 Top Token

MRMR 900 Top Token

MRMR 1200 Top Token

MRMR 1800 Top Token

MRMR 2100 Top Token

MRMR 1200 Top Order

MRMR 1200 Bottom Order

MRMR 1200 Random Order

Each constructed prompt was used to generate 10 Codex outputs in order to account for

the variability in Codex’s generated code. Thus, there were 2340 total code files generated

from Codex.

As manual evaluation of all 2340 code files would be time and labor-intensive and because

unit-testing features of applications such as GUI is more nebulous than for unit-testing

functions, we choose BLEU score as an approximation of code quality [12]. BLEU score

is generally used to quickly and clearly measure the quality of machine translations by

comparing it to manual “golden-standard” translations[12]. BLEU score is expressed on a

scale of 0 to 1, with 1 being a perfect quality translation. In the use case of evaluating
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generated apps, BLEU score is potentially useful because it:

1. decreases the labor needed to evaluate output; instead of manually evaluating thou-

sands of pieces of code, we only need to create ≤ 100 “golden-standard” code solutions.

2. has been shown to account for flexibility in how phrases are structured. This is done

through the provision of more than one golden standard solution from all of which the

machine output can resemble and be considered correct.

3. penalizes redundancy and accounts for the fact that the overgeneration of a word or line

over and over again is not a good solution (for example, text join(text join(text join(text join

is not a good solution even if the golden-standard has “text join” in it).

To use BLEU score, we created 36 manual solutions to the app tasks, 2 per problem. The

solutions for the same problem are designed to be as different as possible from each other and

cover different interpretations of the same app description. For example, if the description

includes “say: ’Your order is ready!’”, we may implement either a text-to-speech, or a text

label that “say” that ’Your order is ready!’ We use the nltk Python library to compute the

BLEU score between the two reference solutions and the generated Codex output. [13] .

2.6.2 Manual Evaluation

Next, we manually evaluated the quality of code generation for one of the test examples,

a translator app. The description is as follows:

Make an app with a text box, a list of six languages and a button

that says “translate.” When the button is clicked, translate the

text into the selected language and show the translation.

We evaluated 130 Codex outputs of generated code for two types of bugs: functional and

syntax bugs.
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Functional bugs are when the generated program fails to complete a task within the user

description. We quantified three specific functions for the translator app:

1. Make an app with a text box, a list of six languages and a button that says “translate.”

2. When the button is clicked, translate the text into the selected language.

3. Show the translation.

Syntax bugs are counted by the number of errors that would be thrown pre-compile. We

evaluated the number of both kinds of bugs per line to explore any potential correlations

between the amount of functional bugs in the code generated by Codex and the number

of syntax bugs. We divided the number of bugs by number of bugs to account for longer

programs being more likely to have bugs.

3 Results

In the automatic evaluation step, the performance of pipelines with different variables was

measured on apps with above median complexity, on apps with below median complexity,

and on all apps. App complexity was calculated with McCabe’s Cyclomatic Complexity, a

common code complexity measurement that calculates the number of possible paths taken

through a program. [14].

In the manual evaluation step, the amount of functional, syntactic, and total bugs per line

are plotted for each variation of the prompt generation pipeline, each of which are fed into

the Codex model 10 times to account for the variability within Codex’s generative output.
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Figure 4: Automatic Evaluation of
Quality of Codex-generated Code for
Each Method. MRMR scores around
0.10 above random for complex apps,
while embeddings performs slightly
better than MRMR for simple apps at
around 0.6 above random.

Figure 5: Quality of Codex-generated
Code for Different Token Limits. For sim-
ple applications, the best performance
is achieved for higher token numbers
(around 1200) at an around 0.13 differ-
ence but for complex applications perfor-
mance marginally varies.
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Figure 6: Quality of Codex-generated
Code for Each Order of Exam-
ples. For simple apps, bottom ordering has
marginally better performance than top and
random ordering. For more complex apps, all
three methods of ordering have roughly equal
performance.

Figure 7: Bugs in Codex-generated
Code for Different Methods. The
embeddings-based pipeline generated
code with the least amount of functional
bugs. The mrmr-based pipeline generated
code with the least amount of syntax
bugs.

Figure 8: Bugs in Codex-generated
Code for Different Token Limits. As
the token length of the prompt increases,
the amount of functional bugs tend to in-
crease while the number of syntax bugs
tend to decrease. The token number at
which this tradeoff is optimized seems to
be around 600.

Figure 9: Bugs in Codex-generated
Code for Each Order of Examples.
The pipeline with the bottom ordering
has the least amount of functional bugs.
The pipeline with the random ordering
has the least syntax bugs.
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4 Discussion

We discovered several interesting trends within our examination of prompt engineering.

First, we find that for complex apps, MRMR and Embeddings perform the best, indicating

that the relevance of examples to the user task is important when Codex must execute a more

complicated task. The reverse is true; for simple apps, simply sending in as many examples as

possible performs well compared to MRMR and Embeddings. Similarly, quality of examples

rather than quantity appears to be more important for complex apps: performance marginally

decreases then increases with token size as shown in Figure 5Figure 5Figure 5. Bottom ordering appears to

perform marginally better than Top and Random for simple apps but not complicated ones.

The manual evaluation reveals an interesting trend: while the mrmr solutions have no

Syntax bugs, they have more functional bugs than embeddings. Moreover, while increasing

the tokens decreases the syntax bugs, the functional bugs increase. Both of these results

indicate a tradeoff between sending new information (more tokens or more lesser-correlated

examples from MRMR) and making sure that Codex stays on task.

5 Future Work

There are some potential changes to the automated prompt contruction pipeline that

were not examined within this study. One of these was tuning the hyperparameters of Codex,

similar to how the authors of the Codex paper examined the effect of, for example, model

temperature on the quality of generated code [3]. Additionally, the performance of other large

language models such as Meta AI’s InCoder in generating apps can be compared to Codex’s

performance [15]. Finally, to increase the robustness of the pipeline and the evaluation of it,

the dataset of App Inventor examples and test App tasks can be further expanded.
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6 Conclusion

We examined three different characteristics of choosing few-shot examples for Codex to

learn from given an user app description: the number of tokens in the prompt, how examples

are chosen, and how the examples are ordered within the prompt. We improve the pipeline’s

performance from baseline on complex apps by 55% (0.10) BLEU score in changing the

method of selecting examples and 43% (0.13) in simple apps from worst-performing number

of tokens to best-performing number of tokens. We also find a significant difference in how

to optimize the platform for complicated apps and for simple ones. We hope that our work

will lead the way for similar studies of prompt engineering for Codex.

7 Practical Takeaways

We’ve worked on optimizing a platform that aims to harness the power of AI to take

an user description of an app and generate an app that matches that description. Our work

has many applications in the democratization of app creation, whether that be in enabling

even children to realize their app ideas or otherwise broadening who can be part of the

technological community. We hope that through our work, we are one step closer to the goal

of anyone with an app idea being able to convert it to an usable app without the barriers of

time and technical expertise.
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