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Abstract

Artificial intelligence (AI) and machine learning (ML) technologies are appearing
in everyday contexts, from recommendation systems for shopping websites to self-
driving cars. As researchers and engineers develop and apply these technologies to
make consequential decisions in everyone’s lives, it is crucial that the public under-
stands the AI-powered world, can discuss AI policies, and become empowered to
engage in shaping these technologies’ futures. Historically, ML application devel-
opment has been accessible only to those with strong computational backgrounds
working or conducting research in highly technical fields. As ML models become
more powerful and computing hardware becomes faster and cheaper, it is now tech-
nologically possible for anyone with a laptop to learn about and tinker with ML. This
includes audiences without programming or advanced mathematics knowledge, who
can use public ML tools to construct both useful technical artifacts and meaningful
socio-ethical artifacts around ML. My research investigates the following question:
How do we reorient ML engineering education to transform “ML consumers” to be
“ML contributors”? In order to illuminate this problem, I have created a Machine
Learning Education Framework. In this dissertation, I present the framework and
three applications of it: (1) a course based on the framework that aims to develop
ML self-efficacy in general college-level audiences; (2) a curriculum rubric based on
the ML Education Framework and analyses of 6 ML/AI courses using the rubric; and
(3) two public ML tools for high school and above ML tinkerers that empower them
to create personal ML applications through image and audio classification.

The ML Education Framework is organized into three interconnected categories:
Knowledge (General ML Knowledge, Knowledge of ML Methods, Bias in ML Systems,
Societal Implications of ML), Skills (ML Problem Scoping, ML Project Planning,
Creating ML Artifacts, Analysis of ML Design Intentions & Results, ML Advocacy,
Independent Out-of-Class Learning), and Attitudes (Interest, Identity & Community,
Self-Efficacy, Persistence). The three top level categories of the framework were cho-
sen to encompass the holistic process of teaching people ML and ensuring continued
participation in the field. “Knowledge” about ML will be necessary for individuals to
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thrive in today’s ML-driven world and builds foundations for further engagement with
the technology. ML “Skills” define specific actions and activities that students need
to do and practice in order to become ML contributors. The category "Attitudes"
reflects long-term societal goals for educational initiatives in ML, and addresses the
perspectives that students should develop through an ML course. This framework
can be used in creating new ML curricula, in analyzing the results of ML interven-
tions, and in situating support tools within ML education for students of a variety of
backgrounds and levels.

Today a large portion of the world solely resides in the “ML consumer” population.
Regulation of ML technologies is nascent. As policymakers think about reasonable
legal structures, the public should be able to actively participate in these discussions.
It is imperative that we empower these “ML consumers” to become “ML tinkerers”
and “ML-engaged citizens”.

Thesis Supervisor: Harold (Hal) Abelson
Title: Class of 1922 Professor of Electrical Engineering and Computer Science
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1

Introduction

This dissertation focuses on democratizing machine learning (ML) for the general

public through reorienting machine learning education to transform ML consumers

to be ML contributors. I present an education framework for ML that will help

inform future decisions and trajectories for general ML education, ML engineering,

and ML-related HCI work (see Figure 1-1).

In the rest of this chapter, I will elaborate on the vision of this work and posi-

tion this work in the larger history of artificial intelligence, machine learning, and

democratization of technology.

In Chapter 2, I present relevant literature from the education research field that

are heavily referenced in this work, including self-efficacy, computational identity, and

computational thinking.

In Chapter 3 I introduce my framework for ML education, and also clarify the

knowledge and skills that are most essential for the general public. I present a logic

model of this framework with linkages.

In Chapter 4, I present the curriculum, research results, and pedagogical findings

for an actionable deep learning course I designed and taught for 2 semesters at the

Massachusetts Institute of Technology based on my ML Education Framework.

In Chapter 5, I present a rubric for analyzing ML curricula created from the prin-

ciples of the ML education framework on a 0-4 scale. I apply the Curriculum Rubric

in analyzing 6 AI and ML courses with input from the original course developers,
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Figure 1-1: The Machine Learning Education Framework for Transforming ML Con-
sumers to be ML Contributors.

including the course I presented in Chapter 4. My analysis using the Curriculum

Rubric reflects the different motivations of K-12 AI courses, technical ML courses,

and AI courses for general adult audiences: K-12 courses tend to focus on analysis

of ML products and systems in relation to society, technical courses dive deeply into

math and hands-on coding experiences without much discussion of analysis or so-

cietal implications, and general adult courses tend to aim for fostering interest and

encouraging students to take technical courses. I offer insights into designing and

implementing ML curricula based on these reviews.

In Chapter 6, I describe PIC (Personal Image Classifier), a public ML tool that I

created for high school students to train image classification models and apply them in

mobile applications built using MIT App Inventor. I discuss the HCI and engineering

considerations of creating PIC and how the ML Education Framework informed the

design and implementation of this tool.

In Chapter 7, I describe PAC (Personal Audio Classifier), a public ML tool similar

to PIC that I created for high school students to train audio classification models

and apply them in mobile applications built using MIT App Inventor. I discuss the
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technical challenges of PAC that differed from PIC and the improvements made to

the user interface.

Finally, in Chapter 8, I propose new research questions relating to the field of

machine learning education and review the contributions of this dissertation.

1.1 Vision: Everyone can understand and tinker with

machine learning

Artificial intelligence (AI) is “the study of agents that receive percepts from the en-

vironment and perform actions” [110]. It includes logic systems crafted from general

deductive principles that solve specific problems, as well as machine learning (ML)

models trained on large amounts of data to inductively find patterns. Over the past

decade, machine learning has been a driving force in economic growth internationally

and has had a revolutionary impact on the world stage. Large corporations and gov-

ernments are pledging billions of dollars to ML research and development. In 2017,

China laid out a plan to lead the world in artificial intelligence by 2030 [85], and

in 2018, the White House directed agencies to prioritize investigating this “emerging

technology” [95]. The rapid growth of machine learning necessitates a push for mass

ML education so that there can be broader participation in the ML innovative and

regulatory processes.

Currently, ML development is still widely considered to be accessible only to high-

level technical researchers at universities or large companies. A 2017 study by The

Royal Society interviewed members of the public in the UK, finding that a majority

of participants knew “little to nothing” about machine learning [84]. While many

of the participants were aware of technologies that use ML, very few were aware

of how the technology worked, “even at a broad conceptual level”. Another study

found that even amongst UX designers working on projects that involved ML, a lack

of understanding was common. One participant referred to ML as “black magic”,

stating that “designers don’t understand the constraints of the technology and how
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to employ it appropriately” [26]. The global push to advance the field will inevitably

lead to efforts in educating the larger public so that more people are able to contribute

to ML innovation and policy-making. So, how should we be teaching this topic to a

broader and less technical audience? What aspects of the technology do they need

to know in order to make useful contributions? Can these considerations perhaps

bring to light pieces that may be missing from the current modus operandi for ML

engineering education?

Technology leaders such as Massachusetts Institute of Technology have stated

that “machine learning is the new literacy” [94], pushing for mass general education

on ML. As we move towards this goal, it will be important to consider how ML differs

from classic algorithms and how we can tailor educational frameworks and pedagog-

ical practices based on these differences. In order for an ML system to “work”, it

is dependent on the availability of high-quality data, scientific insights on features,

appropriate model architectures, and computational processing power. Instead of

making generally deterministic programs, ML developers create systems that auto-

matically and stochastically learn behaviors from large amounts of data. This results

in powerful statistical algorithms that can be hard to debug and understand on a

detailed level, such as when trying to find the cause of a single error in a large neu-

ral network [114]. Due to its stochastic nature, machine learning differs from classic

computer science and even other artificial intelligence topics. Thus, if we want to

educate critical thinkers who are able to apply ML knowledge, tools, and techniques

to a variety of problems, we should consider which concepts and skills are specifically

necessary for machine learning education.

The current standards for ML education are college or professional level courses

that target people who have a background in computer science or mathematics, with

the goal of giving them the ability to become ML engineers or researchers. These

courses cover the technical aspects of ML algorithms and methods, amassing math-

ematical building blocks to help students develop a deep technical mastery over the

inner workings of ML models. This forms a rather high barrier to entry for a field

that society is attempting to ubiquitize. Recently, educators have started to create
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courses aimed at the general public and even young children and there is a need to

distill the key abstractions that can help teach ML in useful, actionable ways. As

we build upon these more inclusive educational initiatives, we should think carefully

about our educational goals for general audiences.

What should they know?

What should they be able to do?

Why and for what purpose?

I will discuss three key reasons for why it is important to teach ML to everyone:

(1) to help people navigate the world they live in, (2) to empower them to participate

in discussions regarding policies around ML, and (3) to prepare for a future of work

in a world that is tightly integrated with AI and ML.

First, people need to understand the world they live in. ML is poised to influence

every facet of our lives and work. Currently, nearly everyone with internet access

is consuming an ML product or some output of an ML system in their daily lives,

whether they know or recognize these ML products or not. In the next decade, the

prevalence of ML is expected to increase. As people consume these products, they

need to be able to understand enough about them to use them effectively and safely.

For example, when people are on social media platforms like Facebook or YouTube,

they usually see that the content they are recommended are related to things that

they have liked or interacted with in the past [18]. While this can be useful, it can also

cause people to be enclosed in “filter bubbles” or “echo chambers” where they aren’t

aware of what important information they are missing [141]. If consumers of social

media don’t actively try to curate and amend what they see, it’s easy for them to

never interact with different or opposing ideas and develop a distorted perception of

reality. Consumers also need to be able to identify and critically interpret ML outputs

to navigate the world. Let’s consider the issue of photorealism. Most people are aware

of Photoshop and other photo manipulation tools and know to have a healthy mistrust

of photorealistic images that don’t make sense. However, recent advances in ML have

led to the ability to generate deepfakes that realistically replicate another human’s

voice and expressions in video and audio [91]. While this application of ML could
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revolutionize the entertainment industry, it could also lead to chaos as people who

are unaware of deepfakes misplace their trust in artificial videos created for political

sabotage. Ideally, we would want to educate people such that they know such artifacts

exist and provide them with the knowledge and tools to critically consider what they

see.

The second key reason that we need to educate the general public in ML is be-

cause people need to be able to participate in discussions regarding policies around

ML technologies. People can’t give thoughtful opinions unless they know something

about the technology, its potential benefits and consequences, and have some way of

critically thinking about these factors in relation to their own lives and in creating a

future society that they would be happy to live in. In governance, for example, many

companies are developing algorithms to assign risk scores to arrestees, which are cur-

rently used by U.S. Courts to determine whether or not people are low risk enough to

be released on bail pending trial [96]. These tools have been very controversial due to

researchers pointing out risks with racial bias [5]. While these algorithms have poten-

tial for improving slow governmental operations, people want to have a say in what

kinds of algorithms are used, how they are used for governance, and what the pro-

cesses for auditing or improving on them are. Another big area of debate surrounding

ML has to do with privacy. Smart speakers and virtual assistants have become very

popular products, and companies like Amazon have revealed that Alexa voice record-

ings are sometimes sent to contractors to be transcribed for research and product

improvement purposes [21]. In Alexa’s case, people were concerned that these record-

ings could potentially be traced back to individuals. This type of data sharing is on

by default in most such devices, and there has been a lot of debate around protecting

consumer privacy interests, especially for people who may not even know that this is

happening or understand the potential implications. Regulations and legal precedents

around ML technologies are just starting to be formed for both governmental usage

of ML and corporate applications of ML, so now is a great time for the people who

will be affected to contribute and make their voices heard in policy-making.

Finally, it’s highly likely that the future of work will be in a world that’s tightly
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integrated with AI and ML. The world will need more people who are trained to work

with ML (e.g. judges who need to interpret outputs from ML algorithms), and people

who are able to develop and build these types of systems. Providing widely accessible

general ML education will help this societal job transition process along.

As ML products and services become more ingrained in everyone’s daily lives,

people need to be able to understand how they work to use them effectively and

safely, and people need to be able to participate in discussions around policies and

regulations. This leads us to want to educate general audiences such that they have

the knowledge necessary to be critical consumers and ML-engaged citizens. There

will also be a big societal push towards training more and more people who can build

ML systems and work with ML. This motivates teaching general audiences the basics

of creating and tinkering with ML systems.

1.2 Photography: An Analogy for Democratizing Ma-

chine Learning

Many technologies have undergone the democratization process throughout history.

In the still-ongoing makerspace movement, individuals are empowered to seize the

power of personal fabrication. Tools such as laser cutters, CNC machines, and 3D

printers allow people to create custom physical artifacts without access to expensive

manufacturing resources. During the Computer-Aided Design movement, CAD soft-

ware was reimagined by Negroponte and Friedman as mechanical partners that could

work with humans. CAD software was later retooled in a way that allowed it to help

dwellers participate in the design of buildings, an area that had previously been the

territory of elite architectural experts [76]. Even in programming, tools like MIT App

Inventor have been designed so that youth can be empowered to create personally

meaningful mobile applications [102]. As we tackle the big question of how to de-

mocratize machine learning and make it more accessible to a wider audience, there is

another technology whose history and development may be an interesting analogy to
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examine: photography.

In the 1800s, William Talbot, a scientist who researched spectrochemical analysis,

established the first negative/positive photographic process [97]. This spawned the

first major stage in the history of photography, when it was mainly a “science”. The

key research question was “How do I take a clear picture?” and the pursuit of this

“science” required high technical knowledge of chemical processes, high time commit-

ment, and high monetary resources. In this first stage, photography was more of an

interesting novelty than anything commercially useful, and was available to only a

small group of technical experts and wealthy individuals.

As the technology became further refined, it became slightly faster and cheaper

to take a photograph. This pushed photography into the second stage of its democ-

ratization, as it became more of an “engineering discipline”. Engineers attempted to

improve upon and perfect the technical methodologies behind photography during

this time, leading to the creation of the first cameras, which allowed more individu-

als (though still mostly of the high wealth and high technical expertise bracket) to

explore the technology.

The third phase of photography started in the early to mid 1900s, when the advent

of easy-to-operate portable cameras allowed for more everyday use by the press [113].

Photography became viewed as more of a “craft” than a technical discipline during

this stage. The key questions surrounding photography also shifted from technolog-

ical research questions to more subjective and abstract ones such as “How do I take

an interesting picture?” Around this time, privacy and copyright laws surrounding

photography started to become defined.

Finally, we are currently in the fourth stage of photography’s democratization,

when it has become almost a “natural activity”. Nearly everyone carries a high-tech

camera with them at all times via their smartphones and mobile devices. The user

interfaces of these cameras are thoughtfully designed to be very efficient and easy to

operate for a wide audience, requiring minimal technical knowledge. Modern cameras

are both extremely fast and relatively inexpensive, making them easily accessible.

Additionally, members of the public are now able to contribute to photography-related
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policy discussions surrounding privacy and intellectual property ownership, and ask

questions like “What should or shouldn’t we be using this technology for?” Recently,

smartphone cameras have even been used as a tool for activism — they are able to

almost instantly give anyone a voice and a media platform in documenting injustice

[3]. In this fourth stage, we consider photography to be a technology that has been

successfully democratized.

Machine learning is currently in the second stage of the democratization analogy

a la photography, where it is considered an “engineering discipline”. Developers no

longer spend most of their time fiddling with hardware; and many don’t even need

to code algorithms from scratch, as there are a plethora of ML libraries and packages

available. Engineers are now working faster and at higher levels of abstraction than

before in applying these technical methods to real world problems. If we want to help

machine learning arrive at the next stages of democratization — machine learning

as a “craft” and as a “natural activity” — it is important to consider three areas of

improvement:

∙ Engineering: Just as the decrease in cost and increase in speed of portable

cameras hailed the advent of photography as a “craft”, decreasing the cost and

increasing the speed of creating and running powerful models will do the same

for machine learning. This will involve innovative technical solutions by both

hardware specialists and model theorists. Computing hardware for machine

learning needs to be made more powerful and more affordable, and ML models

need to be more compact without compromising on function. There has been a

lot of ongoing research in these fields, with some successes already. As electrical

engineers and material scientists create cheaper and faster chips for ML, ML

developers are creating highly functional models that are small enough to run

on laptops or mobile phones [48, 52, 36], and entire ML libraries for training

and running ML models on the browser [116].

∙ Human-computer interaction (HCI): HCI research will be essential in mak-

ing machine learning interfaces usable, understandable, and interpretable. As
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we incorporate machine learning models into more workflows and processes

across industries, we need to study how these ML systems interact with human

decision-makers. Creators of these systems need to carefully and thoughtfully

design them to decrease potential risks and increase human-machine synergy.

Additionally, HCI experts will be crucial as we develop more public ML tools

that allow new populations of people to create, train, debug, and analyze ma-

chine learning models.

∙ Education: Expert educators and educational researchers will need to define

learning objectives and pedagogical practices for teaching machine learning to

students of various grade bands and backgrounds. This will involve designing

curricula and identifying appropriate machine learning tools to use in classroom

settings. Much of this work is expected to be in close collaboration with machine

learning experts.

Since our intended audience of the general public is quite broad, it will be useful

to circle back to the guiding questions presented in Section 1.1:

1. What should they know?

2. What should they be able to do?

3. Why and for what purpose?

Let’s start with question 3. As discussed previously, machine learning is rapidly

being integrated into every aspect of our society and individuals’ daily lives. It

is very difficult to predict how machine learning will be utilized when it reaches

the “natural activity” stage of democratization, but it will soon become imperative

that everyone feel empowered living with machine learning. Currently there are two

populations: the creators of ML technologies, which mostly consists of engineers

and researchers, and the consumers of ML technologies, who know little about the

workings or limitations of the products they are using. There are already serious

consequences from a lack of ML literacy: in this context, photo manipulation software
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is a good analogy for deepfake technology. Another issue tangential to ML is the

mining of big data to train models. People who don’t understand how their personal

data can be collected, sold, and used to encroach on their privacy may unwittingly

divulge personal information that later harms them. There are many more examples

of potential harms when an ML-illiterate population resides in an increasingly ML-

dominated society, and it is important that we transition the current consumers of

ML to ML tinkerers, critical consumers of ML, and ML-engaged citizens.

From these motivations, general ML education involves two types of empower-

ment: first, empowering people so that they feel “I am able to do something with the

technology”; and second, empowering them so that they feel “I am able to do some-

thing about the technology”. These two mental constructs lead to question 2. ML

critical consumers will need to be able to participate in discussions about ML regu-

lations and products, and ML tinkerers may want to use the technology to create or

modify personalized ML artifacts instead of solely consuming off-the-shelf products.

With regard to question 1, the ML tinkerer/critical consumer populations need to

know enough about ML and its potential for good and bad in order to do the tasks

addressed above.

1.3 A Brief History of AI

It is difficult to predict what the world will look like if machine learning achieves the

fourth stage of democratization (ML as a “natural activity”). Perhaps we will see

personal systems that are constantly collecting all sorts of data around us and about

us. Maybe these systems will be able to automatically configure themselves on the fly

to complete a wide range of tasks that a user can ask them to do and clearly explain

their own processes and actions. As we work towards harmoniously incorporating ML

technologies within our societies and our world, let’s first consider a brief history of

AI so that we can recognize how the way AI is approached today (since 2010) differs

from how it was approached in the past.

The field of artificial intelligence grew from the millenia-old human pursuit of try-
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ing to understand our own intelligence. In 1950, Marvin Minsky was one of the first

people on record to attempt to artificially recreate intelligent processes of the hu-

man mind. He built the Stochastic Neural Analog Reinforcement Calculator (Snarc),

which consisted of 40 models of neurons constructed from motors, clutches, and ca-

pacitors; and held electrical charge for a short period of time, simulating memory

[82]. While not practically useful, Snarc is often credited as the first neural network

simulator. Seven years later, Frank Rosenblatt conceived of the perceptron, a “ma-

chine” that approximated a “hypothetical nervous system” by updating weights in a

linear classification algorithm when given new data, simulating learning [108]. Shortly

after that in 1958, Arthur Samuel first coined the term “machine learning” through

a checkers-playing computer program that employed minimax search and alpha-beta

pruning, which was able to play against humans at an amateur level [111]. Following

these inventions, wildly optimistic predictions about solving the nature of conscious-

ness and creating an artificial being of human-level intelligence led to an outpouring

of interest and funding from the military and government. However, researchers soon

hit a high wall when applying these inceptive, biologically-inspired models to real

world problems — the perceptron had very little success when utilized in image clas-

sification tasks since it could not handle nonlinearities, and limited computational

capacity at the time inhibited research into assembling large neural networks out of

mathematical/electro-mechanical models of neurons. This led to the first AI winter,

which involved a dearth of research funding for AI.

Public interest began to pick up again in 1977, when IBM’s Deep Blue computer

employed minimax and alpha-beta to play chess at the highest levels [49]. Deep Blue

was implemented on a machine that was much more computationally powerful than

the one used by Arthur Samuel in 1958, and it was able to successfully defeat Garry

Kasparov, a human chess world champion. This led to another surge of funding for

AI by commercial industries and government, although the research trajectories this

time pointed towards building expert, rule-based systems founded upon chains of

logic instead of systems that simulate biological processes. However, researchers once

again fell short of expectations of creating tools that could actually be used in the

30



real world, as these expert systems made of hand-coded rules could not deal with

uncertainty and were unable to extend beyond their predefined specialized domains.

This cycle of overhype and disappointment led to a second AI winter.

During this time, Rumelhart, Hinton, and Williams reintroduced the concept

of backpropagation by applying it to deep feedforward neural networks (multilayer

chains of perceptrons whose outputs are fed as inputs into other perceptrons) [109].

Their experiments demonstrated backpropagation’s ability to allow the hidden units

of neural networks (the units between the input and output layers) to encode useful

internal representations. This work slowly popularized the use of backpropagation in

deep neural networks, which has had a huge influence on defining the goals and limits

of modern machine learning.

The third wave of AI that we have just started experiencing over the past decade

can be characterized by computational power and extreme practicality. Compared to

the previous two waves, there is less interest in artificial general intelligence (AGI),

which deals with the traditional goals of understanding human intelligence and cre-

ating an artificial consciousness comparable to humans. Instead, most of the funding

(and thus, most of the work) has been directed towards creating useful solutions to

well-defined and narrow real world problems that have clear economic value. Machine

learning techniques and deep neural networks in particular have once again taken cen-

ter stage. Although much of the mathematics behind these methods had already been

proposed decades ago, the powerful computing hardware we have access to today is

able to compute in weeks what would have previously taken decades. Unlike what

led to the previous AI winters, ML researchers and engineers have already made real

headway in applying narrow ML models to increase efficiency in businesses and gen-

erate entirely new sectors of commerce. Due to the economic value already being

produced by ML, the current wave of interest in ML is unlikely to undergo another

big freeze, and we can expect to see ML technologies seep into more products and

services relevant to our daily lives.
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1.4 Defining Artificial Intelligence, Machine Learn-

ing, and Deep Learning

Now that we have some background on the history of this field, let’s define some key

terms that will be used in the rest of this work. While the term “artificial intelligence”

has taken on various meanings over the past several decades, becoming what many

refer to as a “suitcase word”, today it most often refers to the broad field of applying

models to real world data. AI includes logic systems crafted from general deductive

principles to solve specific problems (e.g. human-coded decision trees, alpha-beta

pruning and minimax), as well as machine learning, which refers to models trained

on large amounts of data to inductively find patterns.

Machine learning includes algorithms such as k-nearest neighbors, naive Bayes,

and random forests, as well as neural networks. Unlike other AI topics or classic

algorithms, ML involves statistical models derived from a combination of human

written components and behaviors learned from large data sets, which become difficult

to interpret and debug, especially when the models balloon in size [114].

Deep learning is a subtopic of machine learning involving neural networks with

at least one hidden layer (defined as any additional layer in between the input and

output layers), and is often very data-hungry, thus requiring powerful computational

resources. Deep learning models/deep neural networks have proven to be effective

by themselves when applied to a wide range of tasks, from image classification to

predicting stocks, but ensemble methods combining multiple ML techniques into one

system are becoming more popular.

Now that we have summarized the stages of technology democratization and the

history of AI, let us consider how to expand the use and understanding of AI for the

general population. In the remainder of this thesis, I will discuss how educational

efforts can best support these goals.
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2

Background: ML Education and

Educational Theories as Applied to

Teaching ML

In this chapter, I summarize the types of ML/AI courses and learning resources that

are currently available for three types of audiences: technical, general adult, and K-12.

I then discuss the theoretical considerations from education that influenced my work

in designing the ML Education Framework and teaching ML courses, specifically that

top philosophies in education say that the best way to teach students is to empower

them to create personally meaningful and useful ML artifacts. I will focus on four

main ideas in education theory that are highly applicable in thinking about teach-

ing complex, technical subjects to general audiences: self-efficacy, constructionism,

computational action, and experiential learning.

2.1 The Current State of Machine Learning Educa-

tion

There are three main audiences that have emerged for ML education: technical au-

diences such as engineers and researchers, general adult audiences who are starting
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to interact with ML at work, and K-12 audiences. Technical courses are very well

established in terms of content and style, and are widely accessible, but have a high

barrier of entry to understanding the material and being able to complete the course.

They generally begin from a math-first approach before moving on to coding ML

models. General adult and K-12 courses are not as well established and have only

begun to take shape over the past 2-3 years. There are limited options for courses in

general adult education, and while there are more available educational resources in

K-12, most of them are a mix of short, one-shot activities and workshops with few

full courses. These last two categories are the type of education initiatives we need

for our original goal of transforming ML consumers to be ML contributors.

2.1.1 Technical ML Courses

Over the past few decades, most ML courses have been targeted towards highly

technical college and professional level computer science students. These courses

generally start by teaching the detailed mathematics of ML during lectures (such

as the perceptron algorithm or linear regression) and then asking students to apply

the theories they learned to making proofs and answering questions in problem sets.

These problem sets often involve translating mathematical concepts into code and

running programs on remote computing clusters.

Full-semester undergraduate or graduate courses on ML are available to enrolled

students at many educational institutions (e.g., introductory ML courses at Stanford

University [27] and New York University [83]). Many of these courses are even very

easily accessible for free online (e.g., MIT Open Courseware [115] or Coursera [89]).

These courses are typically intended for computer science (CS) students with an

existing background in the material, and aim to provide a significant level of technical

depth as well as a wide breadth of ML topics. Shorter, primarily online courses

or materials are also offered by some companies (e.g., Coursera [90], fast.ai [32], or

Google [24]). These courses may be more targeted towards software engineers focused

on practical implementation or towards technical product managers working with ML

teams, and usually cover less depth than university courses.
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Some recent efforts, such as Embedded EthiCS @ Harvard [132] or the Responsi-

ble Computer Science Challenge [34], have produced materials focused on AI ethics

that are intended to integrate into undergraduate CS courses. Of course, such courses

often have high barriers to entry in terms of math and computer science knowledge.

Research has shown that these types of courses can be inaccessible for students who

do not have a strong foundation in CS, probability, calculus, or linear algebra. When

researchers interviewed students on their perceptions of learning ML, math was con-

sistently a source of anxiety and a barrier to learning [119].

2.1.2 General Adult ML Courses

Over the past few years, there has been a push to make AI education more accessible

to the public. Elements of AI is a large-scale program that has gained renown for

having international impact in increasing AI and ML literacy. Elements of AI is

a Finnish course created by the University of Helsinki and Reaktor in 2018 as a

public resource to help citizens “cope with society’s ever-increasing digitisation and

the possibilities AI offers in the jobs market” [122]. In 2019, the Finnish government

sponsored the course to be translated and opened to the world with the goal of giving

a practical understanding of AI to the entire population of the European Union. It

has now been completed by over 430,000 people from 170 countries [92].

Some companies and organizations are also starting to offer courses for adult

audiences. Many of these courses target people who are working with or around ML

technologies but are not necessarily the ones doing the development (for example,

product managers, UI/UX designers, or people working on business strategies) [90].

There are also other courses being developed that target a more general adult audience

with the purpose of helping adults better understand how AI will affect their lives

in the future. These courses for general adult audiences are typically much shorter

than technical courses and don’t go into as much depth. There are also very few of

these courses targeted towards general adult audiences compared to technical courses.

Most courses of this type came out within the past 2-3 years. The standards for what

content should be taught and how it should be taught are also not as well developed.

35



2.1.3 K-12 ML Courses

The third area of ML and AI education is in the K-12 community. As everyone looks

to the future of work, there’s been a push to get ML and AI curricula into primary

and secondary schools. Educators and researchers have been creating collections of

smaller, one-shot activities and workshops for AI and ML that can be integrated into

other classes. Over the last 2 years, the community has built several blocks-based

programming tools and data-oriented activities that abstract away a lot of the model

architecture and tuning steps associated with building machine learning models from

scratch (e.g. Cognimates [28], MachineLearningforKids [68]). The MIT AI Education

Initiative has also compiled a collection of tools and workshop curricula [4].

Some full courses for K-12 audiences are also starting to be created. These courses

are not usually meant to be integrated within formal schooling, but are more for

extracurricular or at-home education. The Technovation AI Family Challenge aims

to teach kids a breadth of AI through using a collection of public ML tools mentioned

previously. Technovation is an international organization that runs community-based

learning programs with the goal of teaching girls and families about tech innovation

and entrepreneurship [16]. In 2019, they launched the AI Family Challenge [124], an

AI education challenge for families of children 16 and under. The program offers a

free, hands-on AI curricula with ML units, as well as an international mentorship

forum, and has drawn over 2,800 families from over a dozen countries, including

Bolivia, Uzbekistan, Spain, and the United States [123]. AI-in-a-Box is another long

curriculum that centers around programming a robot using a blocks-based language

[53].

AI4K12 Initiative

In addition to private corporations and educational institutions pushing the democ-

ratization of AI, governments are also trying to set nationwide educational standards,

often motivated by considering the future of work. In 2017, China released guidelines

for becoming a global innovation center in Artificial Intelligence by 2030 [112]. The
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United Kingdom began creating an AI policy for formal education & training, re-

search and development, partnerships, infrastructure, and regulation in 2018 [17]. In

the United States, the Computer Science Teachers Association (CSTA) and the As-

sociation for the Advancement of Artificial Intelligence (AAAI) sponsored the AI for

K-12 initiative (AI4K12) in 2018. The initiative brings together educators of all grade

bands, technology intervention specialists, and leaders from academia and industry

to create “(1) national guidelines for AI education for K-12, (2) an online, curated

resource Directory to facilitate AI instruction, and (3) a community of resource and

tool developers focused on the AI for K-12 audience” [130].

In 2019, this initiative presented an initial list of “Five Big Ideas in AI” along with

some suggestions of what students should be able to do at each grade band in relation

to these topics [37]. As shown in Figure 2-1, the five ideas involve understanding: (1)

the role of sensors in helping AI systems perceive the world, (2) how representations

of information as data structures support reasoning algorithms, (3) that there are

machine learning algorithms that can improve themselves when provided with large

amounts of training data, (4) the need for AI agents to support natural interactions

with humans, and (5) both positive and negative implications of AI in society.

As of July 2020, AI4K12 has also presented a detailed list of topics that students

should know and relevant tasks students should be able to do for Big Idea 1 (Percep-

tion) across K-12 grade bands [131]. These items cover 3 concept areas, which are

further broken down into specific topics:

∙ Sensing: Living Things, Computer Sensors, Digital Encoding

∙ Processing: Sensing vs. Perception, Feature Extraction, Abstraction Pipeline:

Language, Abstraction Pipeline: Vision

∙ Domain Knowledge: Types of Domain Knowledge, Inclusivity

The Big Idea #1 knowledge items and tasks are detailed in Table 2.1 and involve

using AI systems, explaining how AI works, and simulating some AI algorithms for

select applications.
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Figure 2-1: AI4K12’s Five Big Ideas in AI.

What students learn: What students do:

38



K-2 ∙ Sensing in Living Things: Peo-

ple experience the world through

sight, hearing, touch, taste, and

smell.

∙ Computer Sensors: Computers

“see” through video cameras and

“hear” through microphones.

∙ Abstraction Pipeline, Lan-

guage: For a computer to under-

stand speech it must be able to

recognize the sounds from which

words are constructed.

∙ Inclusivity: Speech recognition

systems need to accommodate dif-

ferent languages because many

different types of people will use

them.

∙ Sensing in Living Things:

Identify human senses and sensory

organs.

∙ Computer Sensors: Locate and

identify sensors (camera, micro-

phone) on computers, phones,

robots, and other devices.

∙ Sensing vs. Perception: Give

examples of intelligent vs. non-

intelligent machines and explain

what makes a machine intelligent.

∙ Abstraction Pipeline, Lan-

guage: Describe the different

sounds that make up one’s spo-

ken language, and for every vowel

sound, give a word containing that

sound.

∙ Inclusivity: Discuss why intel-

ligent agents need to understand

languages other than English.
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3-5 ∙ Sensing in Living Things:

Some animals experience the

world differently than people do.

∙ Digital Encoding: Images are

encoded as 2D arrays of pixels,

where each pixel is a number indi-

cating the brightness of that piece

of an image, or an RGB value in-

dicating the brightness of the red,

blue, and green components.

∙ Feature Extraction: Face de-

tectors use special algorithms to

look for eyes, noses, mouths, and

jawlines.

∙ Abstraction Pipeline, Vision:

Understanding complex scenes re-

quires taking into account the ef-

fects of occlusion when recogniz-

ing objects.

∙ Types of Domain Knowledge:

Speech recognition systems are

trained on millions of utterances,

which helps them select the most

likely interpretation of the signal.

∙ Sensing in Living Things:

Compare human and animal per-

ception.

∙ Digital Encoding: Explain how

images are represented digitally in

a computer.

∙ Feature Extraction: Illustrate

how face detection works by ex-

tracting facial features.

∙ Abstraction Pipeline, Vision:

Illustrate how outlines of partially

occluded (blocked) objects differ

from the real shapes of the ob-

jects.

∙ Types of Domain Knowl-

edge: Demonstrate how a text to

speech system can resolve ambi-

guity based on context, and how

its error rate goes up when given

ungrammatical or meaningless in-

puts.
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6-8 ∙ Digital Encoding: Sounds are

digitally encoded by sampling the

waveform at discrete points (typi-

cally several thousand samples per

second), yielding a series of num-

bers.

∙ Sensing vs. Perception: There

are specialized algorithms for face

detection, facial expression recog-

nition, object recognition, obsta-

cle detection, speech recognition,

vocal stress measurement, music

recognition, etc.

∙ Feature Extraction: Locations

and orientations of edges in an im-

age are features that can be ex-

tracted by looking for specific ar-

rangements of light and dark pix-

els in a small (local) area.

∙ Abstraction Pipeline, Vision:

The progression from image to

meaning takes place in stages,

with increasingly complex features

extracted at each stage.

∙ Digital Encoding: Explain how

sounds are represented digitally in

a computer.

∙ Sensing vs. Perception: Give

examples of different types of

computer perception that extract

meaning from sensory signals.

∙ Feature Extraction: Illustrate

the concept of feature extraction

from images by simulating an edge

detector.

∙ Abstraction Pipeline, Vision:

Describe how edge detectors can

be composed to form more com-

plex feature detectors for letters or

shapes.
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9-12 ∙ Computer Sensors: Sensors are

devices that measure physical phe-

nomena such as light, sound, tem-

perature, or pressure.

∙ Abstraction Pipeline, Lan-

guage: waveforms –> articula-

tory gestures –> sounds –> mor-

phemes –> words –> phrases –>

sentences

∙ Types of Domain Knowledge:

Domain knowledge in AI systems

is often derived from statistics col-

lected from millions of utterances

or images.

∙ Inclusivity: Dark or low con-

trast facial features are harder to

recognize than high contrast fea-

tures. Children’s speech is in a

higher register and less clearly ar-

ticulated than adult speech.

∙ Computer Sensors: Describe

the limitations and advantages of

various types of computer sensors.

∙ Abstraction Pipeline, Lan-

guage: Illustrate the abstraction

hierarchy for speech, from wave-

forms to sentences, showing how

knowledge at each level is used to

resolve ambiguities in the levels

below.

∙ Types of Domain Knowledge:

Analyze one or more online image

datasets and describe the informa-

tion they provide and how this can

be used to extract domain knowl-

edge for a vision system.

∙ Inclusivity: Describe some of

the technical difficulties in mak-

ing computer perception systems

function for diverse groups.

Table 2.1: Knowledge items and learning objectives for AI4K12’s Big Idea #1: Per-
ception for K-12 grade bands [131].

AI4K12 has also released a more basic set of items for what students should be

able to do for Big Idea #3, which corresponds to machine learning [37]. These are:

∙ “Grades K-2:

– Learn from patterns in data with ‘unplugged activities’
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– Use a classifier that recognizes drawings. Use Google Autodraw or Cog-

nimates Train Doodle to investigate how training sets work to identify

images and discuss how the program knows what they are drawing

∙ Grades 3-5:

– Describe and compare the three different machine learning approaches:

supervised, unsupervised and reinforcement learning.

– Modify an interactive machine learning project by training its model.

– Describe how algorithms and machine learning can exhibit biases.

∙ Grades 6-8:

– Identify bias in a training data set and extend the training set to address

the bias

– Hand-simulate the training of a simple neural network

∙ Grades 9-12:

– Train a neural network (1-3 layers) with TensorFlow Playground

– Trace and experiment with a simple ML algorithm”

This work by AI4K12 is still in progress, with the most recent updates given in

summer 2020. There has been much work in creating hands-on public ML tools for

youth, short workshops and activities that help students understand AI and ML, and

some longer curricula. The timeline for K-12 AI education is similar to that of general

adult education; materials have just started coming out in the past 2-3 years.

2.2 Education Theories as Applied to ML and AI

Education

I will now discuss the larger philosophical considerations from education that in-

fluenced my work. Education theories and research have a lot to say about how to
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effectively teach complex, technical subjects to general audiences. In general, in order

for students to understand and become engaged in a difficult topic, it is essential that

they feel empowered to create personally meaningful and useful artifacts. Self-efficacy

theory deconstructs four elements that support this development. Constructionism

and computational action identify ways to use a student’s community and environ-

ment to support their learning. Experiential learning theory addressed the detailed

processes of building hands-on activities into curricula.

2.2.1 Self-Efficacy

Self-efficacy, defined as a belief in one’s competence or chances of successfully accom-

plishing a task and producing a favourable outcome, is a prominent social learning

theory that is highly correlated to positive academic outcomes [7]. It was proposed by

Albert Bandura in the 1900s and has since been closely tied to student success and

persistence in educational settings. Research shows that self-efficacy beliefs shape

how one approaches goals, tasks, challenges [77], and career aspirations [8]. It is im-

portant to note that self-efficacy as framed by Bandura is task-specific and does not

relate to general feelings of confidence that are not task related.

There are four components of self-efficacy: enactive mastery, vicarious experiences,

persuasion and support, and physiological experiences (see Figure 2-2) [7, 6]. Enactive

mastery experiences arise from having the student directly and successfully perform

tasks related to the learning objectives. Vicarious experiences refers to how people can

develop and strengthen their sense of self-efficacy through seeing others like themselves

succeed. Persuasion and support leads to self-efficacy when students feel encouraged

by feedback from respected friends and advisors relating to the educational goals.

Emotional and physiological experiences also influence students’ interpretations of

their own abilities. During educational interventions, feelings such as stress, anxiety,

and shame may have dampening effects on self-efficacy while feelings such as wonder,

joy, or excitement may increase self-efficacy.

Research suggests that the most important component of developing a strong

sense of self-efficacy is enactive mastery [6]. When creating ML and AI curricula,
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Figure 2-2: The theory of self-efficacy as applied to machine learning education.
Enactive mastery is the most important component in developing self-efficacy.

it will be important to design hands-on learning experiences that are simultaneously

challenging and set students up for success. This will require educators to carefully

consider the available tools for ML artifact creation and exploration, and may even

motivate new tools to be built that fulfill instructional design needs. In practice,

when educating students from a wide range of backgrounds, educators may also wish

to emphasize collaborative work, work with near-peer mentors, and exposing students

to ML professionals of diverse demographics (gender, age, and race/ethnicity) as

means to build self-efficacy.

2.2.2 Constructionism, Computational Action, and Computa-

tional Identity

Constructionism is basically, as Seymour Papert stated, the idea that “children learn

best when they are actively engaged in constructing something that has personal

meaning to them” [100]. In line with constructionism, computational action encom-

passes the idea that when teaching computing specifically, we should start with au-

45



thentic, real world applications instead of technical concepts and processes [129]. In

computational action, to make computing education more inclusive, motivating, and

empowering, students should have opportunities to create with computing that have

direct impact on their lives and their communities. There are two components of com-

putational action: computational identity and digital empowerment. It is important

to make sure that students develop “computational identity”, which is “seeing oneself

as able to design and implement computational artifacts and also seeing oneself as

as a part of the computing creator community” [129]. This definition is analogous

to the construct of “scientific identity” as it appears in science education literature

[133]. Formation of computational identity connects personal learning to community

spheres and also encourages self-directed learning after the course is over. Digital em-

powerment refers to instilling the belief that students “can put their computational

identity into action in authentic and meaningful ways on issues that matter to them”.

Development of computational identity and computational action are closely tied

to the “persuasion support” component of self-efficacy. In order to foster computa-

tional identity, students need to both succeed at computational tasks and engage

in positive experiences as members of the relevant technical communities. Compu-

tational action requires students to participate in meaningful projects in service of

their local or global communities, which will hopefully evoke positive messages of

support from others and increase interest in the subject. Interwoven with approaches

to deepen engagement and the development of self-efficacy, computational identity

and computational action address how learners can connect their personal learning to

community spheres. Computational action also emphasizes that instead of “generic”

examples of applications, students should be interacting with “authentic” applications

that directly have impact on their real lives.

In the context of machine learning, computational action is built as learners begin

to see themselves as practicing machine learning creators while engaged in authentic

ML practices as part of an ML community. It can be elicited through learning expe-

riences where students apply ML to real issues and problems that they care about.

Students’ resulting projects will further engage them in learning and wanting to con-
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tinue in the practice, forming a virtuous cycle capable of reinforcing and rewarding

student behavior. When we apply these ideas to larger frameworks of ML education,

we want students to form personal identities in relation to ML such that they feel like

they can design and create personally meaningful ML applications to influence their

world and identify as members of a larger community of ML creators.

2.2.3 Experiential Learning Approaches as Applied to ML

Experiential learning is defined as “learning through reflection and doing” and is

founded in the work of Dewey (1938) [25], Lewin (1951) [74], Piaget and Inhelder

(1969) [106], and Kolb (1984, 2014) [66, 67]. It is also related to Papert’s work on

constructionism, as it is elicited through direct manipulation of objects or systems as

“objects to think with” [100]. Experiential learning approaches have been shown to

be particularly suitable for use in computationally-rich learning environments. Labo-

ratory experiments, including those using remote, virtual and hands-on laboratories,

have been seen to lead to more efficient learning than passive reading or watching [2].

Kolb (1984) described four main phases of knowledge construction in his experi-

ential learning theory: concrete experience (doing or having an experience), reflective

observation (reviewing and reflecting on the experience), abstract conceptualization

(concluding or summarizing learning from the experience), and active experimen-

tation (planning or trying out new experiments based on what you have learned)

[66]. These four phases follow a perception/processing continuum (see Figure 2-3),

and form an iterative cycle during which meaningful learning occurs through many

rounds of direct manipulation followed by reflection [47]. It is important to note that

in the context of machine learning education, direct manipulation includes not only

running demonstrations of the machine learning systems but also making modifica-

tions to the systems (through code or other means) and testing the results of the

modifications in real-time.

These knowledge construction approaches are traditionally applied to machine

learning education by using programming tools such as Python or R as the corner-

stones of the “active experimentation” stage. However, as mentioned previously, these

47



Figure 2-3: Kolb’s four-stage experiential learning cycle [66].

tools present high barriers to entry, halting many potential learners before they are

able to complete the first phase. Additionally, programming tools may slow down

learners who are trying to quickly build up their masteries of ML by traversing the

experiential learning cycle over multiple iterations — even students with adequate

programming experience can spend a lot of time debugging simple errors when work-

ing with a new machine learning library that they are unfamiliar with.

Fortunately, many companies and organizations are starting to build user-friendly

applications for exploring and creating machine learning models. Web applications

such as Teachable Machine [118], Model Builder [55], and Embedding Projector [125]

enable students to directly manipulate machine learning systems to rapidly gain ex-

perience. Such user interfaces often entirely shield students from having to deal with

syntax errors, and even cover some compiler and logic errors as well. Figure 2-4 shows

the difference between using Model Builder, a user-friendly neural network training

and analysis tool, and writing TensorFlow.js code that achieves similar learning ob-

jectives. These abstractions can be very valuable for the initial stages of learning in

removing potential avenues of frustration with the learning experience that have little

to do with the concepts behind the topic at hand. The existence of these technolo-
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gies has also made it possible to teach machine learning on in-browser platforms that

don’t require high levels of computational power. Educators can use such public ML

tools to develop learning experiences that fully support direct manipulation without

the constraints that existed previously. Furthermore, such “laboratory” experiences

with ML systems would provide students with experiences that directly relate to the

future of work at the human-machine frontier.

Of course, once students use these public ML tools to gain enough general ML

knowledge and method-specific knowledge after sufficient experiential learning cycles,

they may wish to continue their learning trajectories by delving deeply into code.

Good public ML tools will support this transition superbly, as they will have already

exposed students to key concepts, terms, and architectural structures necessary for

coding machine learning models. Some of that knowledge will directly transfer over

as students learn how to program using ML libraries.

These four education theories are the foundations upon which my ML Education

Framework is built, since my goal is to try to engage more people in ML so that they

can understand how ML products work, can use them effectively and safely, and can

participate in discussions around policies and regulations. The main takeaways that

I use in my research philosophy are that: (1) students need to be experiencing hands-

on learning with ML; (2) they need to create personally meaningful ML artifacts;

(3) they need to be able to identify extended learning communities and connect with

those communities; and (4) we need to teach using unintimidating, non-frustrating

tools that are appropriate for the audience’s background and level.

2.3 Similar Educational Frameworks in Computing

and Engineering

As we design curricula and learning experiences for teaching AI and ML, it is impor-

tant to consider related research into good pedagogical practices. Before I present

my ML Education Framework, I will discuss two frameworks for computing and en-
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Figure 2-4: Creating and training a convolutional neural network with Model Builder
(top) [55] vs. through code (bottom).
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gineering education that are built upon similar theories in education: computational

thinking and CDIO.

2.3.1 Computational Thinking

Computational thinking is the method of framing a problem and problem-solving that

arises from the core principles of computing [73]. Aside from its influence on society

through computer science, computational thinking has led researchers to create inno-

vative solutions for challenges from sequencing the human genome to microeconomics

[137]. In 2012, Brennan and Resnick established a framework for studying and assess-

ing the development of computational thinking. Through their research with Scratch,

a blocks-based programming language, they proposed a three-pronged approach to

considering computational thinking through: (1) concepts, which refer to technical

programming concepts; (2) practices, or good programming methodology; and (3)

perspectives, which describe how an individual relates to the technological world [14].

Over the past decade, computational thinking has gained funding and traction in pri-

mary education internationally due to the emergence of a generation more reliant on

technology than ever before [41]. Despite initial skepticism, researchers, and teachers

have also shown that it is both possible and valuable to teach students computational

thinking at a young age.

Two large surveys of computational thinking education conducted in the past

decade have gained much traction: In Lee et. al.’s 2011 paper detailing a set of NSF-

supported STEM programs, it was found that existing definitions of computational

thinking can be applied to K-12 settings for students from a wide range of technical

and socioeconomic backgrounds [73]. To model and understand the specific values

that students took away from computational thinking lessons, they developed a three-

prong framework: (1) Abstraction, applying concepts from one use case to another;

(2) Automation, using a computer to execute a set of repetitive tasks more efficiently

than a human; and (3) Analysis, a reflective process of the students’ assumptions

and implementations. More recently, Duncan and Bell analyzed a variety of English,

Australian, and CSTA curricula that had been published for primary schools [29].
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They established the main topics covered in all of these curricula and the suitabil-

ity of the material for first year to eighth year primary school students. They also

emphasized the importance of teacher development—once teachers understood why

computational skills were important to teach, they were more comfortable and con-

fident with teaching the material. One key takeaway from this study was that the

content of most of the curricula they analyzed focused on programming skills and

data representation knowledge instead of developing more intrinsic perspectives, such

as empowering students to be technological creators. Researchers had also hoped that

computational thinking skills would be taught indirectly via the learning of computer

skills, but found that this was generally not the case.

Grover and Pea have also conducted a pedagogical study of methods for intro-

ducing computational thinking concepts in middle schools [41]. Instead of teaching

through traditional text-based code, they chose to use MIT App Inventor, a blocks-

based programming tool. MIT App Inventor has the goal of allowing people with little

to no programming experience to make highly functional mobile applications, and it is

particularly well-suited to empowering beginner audiences in creating useful technical

artifacts [56]. Based on the workshops they ran, they concluded that there should

be a much heavier emphasis on social interaction in the development of individual

mental processes in computational thinking education. Specifically, there is a need

to develop communicative activities during classes so that students can foster better

individual and group learning. Grover and Pea felt that ideas of classroom discourse

should be brought in from the learning sciences to teach introductory computational

concepts. In concert with computationally rich activities, discussions and reflection

sessions with peers significantly influenced the organic introduction and use of new

vocabulary as well as important foundational computing concepts that learners were

previously unaware of.

It has been said that AI and ML education are the next stages of computational

thinking education. There are many relevant lessons that we can take from the devel-

opment of the computational thinking education field as we move into similar territory

with respect to machine learning. First, it is entirely possible to teach complex techni-
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cal concepts to children and general audiences in meaningful, useful ways. Applicable

technical abstractions need to be made when establishing the knowledge, skills, and

attitude goals during the design of educational interventions. Tools that are both

empowering and at an appropriate level for the audience need to be identified and

used. Teachers need to be properly supported so that they have clear understandings

of good pedagogical approaches for the technical topics at hand. It will be useful to

keep these foundational educational frameworks in mind as we move to pioneer similar

areas for machine learning education targeted towards youth and general audiences.

2.3.2 Conceiving - Designing - Implementing - Operating (CDIO)

and Use-Modify-Create (UMC)

Conceiving — Designing — Implementing — Operating (CDIO) is a prominent educa-

tional framework used in general engineering education, specifically at the university

and professional levels [20]. The first CDIO syllabus was created in 2001 with the

purpose of codifying a comprehensive understanding of skills needed for professional

engineers to excel in industry (i.e. technical, personal, interpersonal, and system-

building skills) and defining new educational approaches to engineering education

based on these real-world skills [19]. The most recent CDIO syllabus was released in

2011 and presents three building blocks of “knowledge”, “skills”, and “attitudes” that

support engineering students’ abilities to “Conceive, Design, Implement, and Operate

Systems in the Enterprise, Societal and Environmental Context” [20]. Within this

syllabus, knowledge is developed first, followed by professional skills and personal at-

titudes, then interpersonal skills, and finally the integrated CDIO process. Table 2.2

presents items from the syllabus at a second level of detail.

Researchers and educators are starting to apply CDIO principles to artificial intel-

ligence and machine learning engineering education in areas including medical ther-

apy and robotics [79, 10]. More research needs to be done to determine exactly how

machine learning will fit into the CDIO framework, but the backbone of “knowl-
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1. Disciplinary Knowledge and Reasoning
1.1 Knowledge of underlying mathematics and science
1.2 Core fundamental knowledge of engineering
1.3 Advanced engineering fundamental knowledge, methods and tools

2. Personal and Professional Skills and Attributes
2.1 Analytical reasoning and problem solving
2.2 Experimentation, investigation and knowledge discovery
2.3 System thinking
2.4 Sttitudes, thought and learning
2.5 Ethics, equity and other responsibilities

3. Interpersonal Skills: Teamwork and Communication
3.1 Teamwork
3.2 Communications
3.3 Communications in foreign languages

4. Conceiving, Designing, Implementing, and Operating Systems in the
Enterprise, Societal and Environmental Context
4.1 External, societal and environmental context
4.2 Enterprise and business context
4.3 Conceiving, systems engineering and management
4.4 Designing
4.5 Implementing
4.6 Operating

Table 2.2: The CDIO syllabus for university and professional level engineering edu-
cation at a second level of detail [20].
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edge”, “skills”, and “attitudes” in support of professional engineering practices seems

transferable to this field. It is interesting to note that due to the importance of

feedback loops in ML systems that are constantly learning from live data and up-

dating, a CDIO framework tailored to ML may want to establish a more prominent

piece within the “Design” part of the syllabus that educates students on implementing

feedback/continuous evaluation processes in ML systems.

While CDIO has been traditionally targeted towards students on a technical career

trajectory, Use-Modify-Create (UMC) is a lesson progression that has been shown to

support youths’ development and engagement in computational thinking [73]. In a

variety of programs for youth, UMC has engaged learners in progressively deeper

computational thinking experiences within rich computational environments. This

pattern of engagement is based on the premise that scaffolding increasingly deeper

interactions will promote the acquisition and development of computational thinking

(see Figure 2-5). In the “Use” stage, learners are initially consumers of someone else’s

creation. Over time, in the “Modify” phase, they begin to alter the model or system

with increasing levels of sophistication. As learners gain skills and confidence, they

are encouraged to develop ideas for new computational models or systems of their

own design that address issues of their own choosing. Within this “Create” stage, all

three key aspects of computational thinking — abstraction, automation and analysis

— come into play. UMC draws elements from Kolb’s Experiential Learning Theory

(1984) [66] wherein knowledge is created through the transformation of experience and

Vygotsky’s Social Constructivism (1978) [134], which posits that students construct

their own knowledge from experiences that have personal meaning to them through

discussion and collaboration.

The Use-Modify-Create progression has been applied to machine learning educa-

tion to help students deepen their understanding of ML concepts and gain mastery

of practical ML skills [71]. First, students use ready-made ML models within fast-

response and user-friendly interfaces to develop high-level intuitions about training,

testing, and the importance of data. Then students manipulate the models directly

through modifying code to gain understanding of how different architectures, hyper-
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Figure 2-5: A diagram of the Use-Modify-Create learning progression proposed in
[73] as adapted by K12CS.org [35].

parameters, and data impact results for various types of problems. Finally, students

scope out a problem suitable for ML and create an ML application of their own.

In considering the CDIO framework and the UMC progression in the context of

machine learning education, both approaches may be suitable for students of dif-

ferent backgrounds. CDIO appears to be appropriate for educating ML developers

and engineers while UMC may be more appropriate for general education, as we

consider transitioning ML consumers to ML tinkerers, critical consumers, and ML-

engaged citizens. Unlike most traditional engineering fields, machine learning can be

highly nondeterministic and uninterpretable. The hands-on-first approach of the Use-

Modify-Create progression can help general audiences without technical backgrounds

quickly develop useful intuitions about these complex technologies. We can also con-

sider using UMC-centric curricula as precursors to CDIO curricula in transitioning

students who have completed a general ML education who wish to further pursue a

more technical, career-focused ML education.

The course that I will discuss in Chapter 4 (6.S198: Deep Learning Practicum)

is an example of how the Use-Modify-Create progression can be successfully applied

to teach machine learning to general audiences who may not have backgrounds in

computer science.
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3

The Machine Learning Education

Framework

In this chapter, I introduce my framework for ML education targeting a tinkerer/consumer

audience. In Chapter 4, I will present a machine learning course for general adult

audiences that was built using this framework, and in Chapter 5, I will analyze 6

ML and AI courses for various audiences using a curriculum rubric based off of this

framework.

The Machine Learning Education Framework was inspired by educational theories

of self-efficacy, constructionism, and computational action. It clarifies the knowledge

and skills that are most essential for the general public and is organized into three

main sections: what concepts students need to know about ML, what skills they need

to have, and what attitudes we want them to develop towards ML. It also has a

similar organization as frameworks for computational thinking and CDIO.

The three top level categories of the framework were chosen to encompass the

holistic process of teaching people ML and ensuring continued participation in the

field. “Knowledge” about ML will be necessary for individuals to thrive in today’s ML-

driven world and builds foundations for further engagement with the technology. ML

“Skills” define specific actions and activities that students need to do and practice

in order to become ML contributors. The category "Attitudes" reflects long-term

societal goals for educational initiatives in ML, and addresses the perspectives that
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Figure 3-1: The Machine Learning Education Framework.

students should develop through an ML course.

While this framework was created to specifically be applicable for transforming

ML consumers into ML contributors who are civically engaged and able to tinker

with ML, this framework is also extendable to further technical education in ML.

3.1 The Machine Learning Education Framework

A summary diagram of the framework is presented in Figure 3-1. There are 4 knowl-

edge items, 6 skills, and 4 attitudinal items. In this section, I will detail each item

and describe how these elements are interconnected.

3.1.1 Knowledge

K1, the first knowledge item, is General ML Knowledge. This refers to knowing what

machine learning is, and understanding the entire pipeline of how ML systems are

created, from the first steps of problem identification and scoping to data collection,

training, testing, deployment, and setting up structures to constantly incorporating

new data and feedback into improving the ML system.
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K2 is Knowledge of ML methods. This refers to being able to accurately discern

when to use a range of machine learning methods across the breadth of the field (e.g.

k-nearest neighbors, CARTs or decision trees, neural networks, ensemble methods)

and also understanding how different methods work.

K3 is Bias in ML Systems. The core idea behind this item is that just because ML

algorithms are automated or math-based does not automatically make them neutral

or fair. It is entirely possible for ML systems to create as biased outcomes as humans

decision-makers or even amplify bias. At deeper levels, students should know the

ways that bias can be incorporated in each step of the machine learning pipeline and

also have some understanding of how to incorporate practices of ethical thinking and

design.

K4 is Societal Implications of ML. Students should know that ML systems can have

widespread positive and negative impact when implemented in a society. They should

also recognize that creators of ML technologies need to consider ethical, cultural, and

societal implications of their work.

These 4 knowledge items encompass both technical concepts and ethical, cultural,

and societal considerations relating to ML.

3.1.2 Skills

Under the skill category, the first skill, S1, is ML problem scoping. This concerns

whether or not students are able to determine which problems can be solved using

ML (i.e. if the problem is such that past data predicts future outcomes and if it’s

possible to obtain a lot of training data) and also which problems should be solved

using ML from a logical, cultural, or ethical perspective. This is a skill that many

students struggle with. It’s fairly common for beginners to get the impression that

ML can be used for absolutely anything, but, for example, it may not make sense to

apply it to problems like writing healthcare legislation or predicting when a star will

burn out.

S2 is ML Project Planning. Following from S1, when you are given a problem

that is suitable for ML, are you able to plan out a solution sensitive to both technical
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implementation considerations (i.e. what data is needed, how to obtain the data,

what resources are available for training, what metrics to use for analysis) and con-

textual factors such as how the system fits into existing human, technical, or systemic

processes and considerations like data privacy.

S3 is Creating ML Artifacts. This skill covers whether or not students are able

to use appropriate tools to create a range of machine learning artifacts. There are

a wide range of appropriate tools for different audiences and different applications.

For data collection for example, this skill can encompass both using a website like

Kaggle or writing code to scrape data using a library such as Beautiful Soup. For

application creation, tools can vary from PyTorch or TensorFlow to Cognimates or

Teachable Machine.

S4 is Analysis of ML Design Intentions and Results. While S3 is the skill of

creating technical ML artifacts, S4 encompasses the skill of creating analytical ML

artifacts. Students need to be able to extract both implicit and explicit design in-

tentions of an ML system and be able to critically analyze those initial intentions in

relation to how the deployed system can and should be used (e.g. considering the

affordances of a system, use cases, or accuracy targets of predictive classes in relation

to socio-political intentions or financial incentives).

S5 is ML advocacy, which refers to students’ abilities to critically engage with

their communities regarding machine learning policies, products, and education.

S6 is Independent Out-of-Class Learning. Due to ML being a very rapidly de-

veloping field, it is important for students to be able to learn new ML concepts or

skills independently of educational interventions in order to keep up. It is difficult to

measure and keep tabs on whether students do this after a course is over, but during

a course, it’s entirely possible to build activities that encourage students to seek out

learning experiences outside of the classroom. This can be anything from following

the news or blogs about ML to experimenting with new ML products or methods.

These 6 skills encompass critically thinking about ML, creating technical ML

applications, engaging with ML on a societal level, and skills for personal future

development in ML.
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3.1.3 Attitudes

Under the Attitude category, the first item, A1, is interest. We want students to

feel that ML is interesting and important to their lives so that they become highly

motivated to engage more with the subject.

A2 is Identity and Community, which stems from the educational theories of

computational action and identity. It is important for students to feel that they

belong to a larger ML learning community where they can receive help from and

give back to. During an educational intervention, the students can be encouraged to

practice participating in both small learning communities of their peers and larger

communities that may be online.

A3 is Self-Efficacy. We want students to feel fully empowered to engage more with

machine learning, and design and build new and meaningful things — this can be

technical applications or socio-analytical artifacts.

Finally, A4 is Persistence. This refers to whether or not students voluntarily and

successfully pursue more and more experiences with machine learning in the future.

For example, if they start keeping up with news about ML, take more classes in ML,

complete new ML projects, or even pursue a career change to work with machine

learning. This item can be very difficult and very resource-intensive to measure since

it involves keeping track of a lot of people over time.

3.1.4 Essential Items of the Framework

There are three knowledge items and three skills that are minimally necessary for

courses for ML-engaged citizens (starred * in the framework per Figure 3-1). These are

K1. General ML Knowledge, K3. Bias in ML Systems, K4. Societal Implications of

ML, S1. ML Problem Scoping, S4. Analysis of ML Design Intentions and Results, and

S5. ML Advocacy. In many classrooms across the world, there may not be sufficient

or available resources to run hands-on activities for technical artifact creation. In

these cases, the 6 starred items are still possible to cover such that students become

able to petition their government to address societal issues relating to ML or make
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Figure 3-2: Key linkages between elements of the ML Education Framework.

decisions about what ML technologies to use and how to use them in their personal

lives.

These starred items should still be important to cover at some level in courses for

ML tinkerers and even for technical courses meant for researchers and engineers.

3.2 Interconnections within the Framework

The 14 elements of this framework are closely interconnected (see Figure 3-2). In this

section, I will detail the reasoning behind the interconnections by discussing which

items feed into each element.

Within the Knowledge category, linkages are fairly intuitive. K1. General ML

Knowledge is the initial root of the framework and is thus linked to every element in

the framework. In these linkages, I will be highlighting the items for which strong

ability in K1 is necessary. K1 aids in the development of K2. Knowledge of ML

Methods.

In order to achieve K3. Bias in ML Systems, a student needs knowledge of the ML

creation process to understand how bias can unwittingly occur in every step of the
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pipeline. Knowledge of specific ML methods (e.g. specific loss functions) also aid in

developing a better technical understanding of how bias can occur and be mediated.

In order to achieve K4. Societal Implications of ML, students need both K1.

General ML Knowledge, and K3. Bias in ML Systems. Understanding bias helps to

motivate a deeper understanding of the huge societal impact that ML systems can

have, both the good and the bad.

Three knowledge items feed into S1. ML Problem Scoping: K1. General ML

Knowledge, K3. Bias in ML Systems, and K4. Societal Implications of ML. K1 helps

the student answer whether or not a problem can be solved using ML, whereas K3

and K4 help the student think about whether or not a problem should be solved using

ML.

All 4 knowledge items as well as S1 feed into S2. ML Project Planning. In order to

create a detailed plan for a given ML project, the student needs holistic appreciation

for both the technical and socio-ethical aspects of the ML problem.

S3. Creating ML Artifacts follows from K2. Knowledge of ML Methods and S2.

ML Project Planning. The students need to understand the process of creating the

artifact they are planning to make and also be able to use the appropriate tools and

methods to do so.

S4. Analysis of ML Design Intentions and Results feeds from K3. Bias in ML

Systems, K4. Societal Implications of ML, and S3. Creating ML Artifacts. In

order for a student to properly analyze the effects of an ML system, they need to be

able to consider the societal implications and potential ethical concerns towards the

performance of the system. It is also valuable for the student to have knowledge of

how the ML system was created so that they are able to make reasonable technical

judgments and recommendations for improvement.

S5. ML Advocacy feeds from K3. Bias in ML Systems, K4. Societal Implications

of ML, and S4. Analysis of ML Design Intentions and Results. In order to motivate

people to participate in activism relating to ML, it is important that they know of

the known ethical problems and potential widespread benefits and harms. Being able

to critically analyze ML technologies in a professional manner will help people engage
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in more effective and convincing advocacy.

S6. Independent Out-of-Class Learning arises from S3. Creating ML Artifacts,

S4. Analysis of Design Intentions and Results, S5. ML Advocacy, and A2. Identity

and Community. Students are inspired to learn independently when they are highly

motivated and engaged in creating ML artifacts (either technical or analytical). In

order for students to succeed at independent out-of-class learning, they need to have

a community that they can learn from and enough confidence in their ability to learn

the material.

The two items that most contribute to developing A1. Interest in ML are: teaching

them about the huge potential for ML to enact widespread change for good and for bad

(K4. Societal Implications of ML), and transforming them from passive consumers

of ML to active creators of it (S3. Creating ML Artifacts).

Two elements that feed heavily into A2. Identity and Community are S5. ML

Advocacy and S6. Independent Out-of-Class Learning. In a bit of an obvious feedback

loop, engaging in ML advocacy in the community helps students start the cycle of

actively participating and molding an ML learning community, and the behaviors

occur when students begin learning outside of class in an external community.

As previously discussed, self-efficacy has 4 components: enactive mastery, vicari-

ous experiences, persuasion and support, and physiological states. Enactive mastery

is developed when students create ML artifacts (S3) and when they engage in ML

advocacy as a form of creating ideas, conversations, and change in their community

(S5). Both vicarious experiences and persuasion and support come from A2. Identity

and Community, where students can see their peers succeeding at doing ML tasks

and receive positive feedback from their learning community. Physiological states are

not directly addressed in the framework but emotions like nervousness or stress can

be controlled in classic academic settings through good pedagogical practices and in-

structional design (i.e. being clear about prerequisites, properly supporting students

through problem areas).

Finally, 3 other elements feed into A4. Persistence. As we consider how the future

of work is expected to be closely tied to advances in machine learning, many people
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and organizations are interested in developing persistence in ML through entry-level

ML courses. Specifically, when a student completes a course, we want them to consider

pursuing more advanced learning in the field, or even start a career in ML some day.

Research into persistence in education shows that there are three key components

[128]: (1) whether or not the student believes in their ability to succeed (which comes

from A3. Self-Efficacy), (2) whether or not the student feels a sense of belonging in

the ML community (which comes from A2. Identity and Community), and (3) what

the student perceives the value of the material to be. This third item can refer to

recognizing societal implications or personal implications of ML (e.g. acknowledging

that machine learning will be important to know and apply in order for students to

safely and effectively navigate the world). This third item is closely related to K4.

Societal Implications of ML.

In Chapter 5, I will analyze how other courses relate to this framework, as well

as compare my ML Education Framework to the Five Big Ideas from the AI4K12

Initiative, which is another prominent set of guidelines for AI education in the United

States.
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4

6.S198: Designing a College-Level

Actionable Machine Learning

Practicum

“Before this course, I thought of computer programs more linearly – as if

computer programmers were mostly in control of a program’s results. Now

I have a much greater understanding of how machine learning programs can

be biased and unfair... I learned the importance of providing good, varied

input data and how this data can have a significant impact on a network and

ultimately the world.”

– 6.S198 Student, Spring 2018

In this chapter, I present the curriculum, research results, and pedagogical findings

for an actionable deep learning course I designed and taught at the Massachusetts

Institute of Technology (MIT) using the Machine Learning Education Framework.

This course was called "6.S198: Deep Learning Practicum" and had the goal of help-

ing students develop self-efficacy in machine learning, specifically focusing on deep

learning techniques. Following from that goal, the course aimed to help students with

or without prior programming or AI/ML knowledge develop the knowledge and skills

necessary to apply ML to interesting and suitable problems of their own choosing.
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Instead of aiming to develop students into ML researchers or engineers, the course fo-

cused on the “doing and use of machine learning” and the creation of ML applications.

As a practicum, the course was designed to incorporate mechanisms for engagement:

empowering students, creating meaningful experiences through scaffolded, inquiry-

based learning, and authentic learning opportunities.

The Deep Learning Practicum was offered at MIT in the spring and fall 2018

semesters. The course met twice a week for 1.5 hours each session over 15 weeks and

offered a hands-on, application-based educational approach to ML. The course was

12 units, which is standard for a full semester course at MIT, and was designed as a

small scale, lab-based experimental course that counted as either an Elective or an

Independent Inquiry in EECS. The course was open to students from any major and

grade level, with no requirements for prior programming or ML knowledge. The first

offering in spring 2018 acted as a pilot that informed better pedagogical design for the

next offering of the course. The instructors hoped that within a semester, the course

would allow any student to gain the skills and knowledge necessary to apply machine

learning to their work or daily lives. Most of the material from the two offerings of

Deep Learning Practicum have been previously published [71, 72, 78].

4.1 Instruments and Assessment

Since the purpose of Deep Learning Practicum was to empower students to create

with ML, the most important measurements we wanted to make for this research were

of student “self-efficacy”. When we taught the course, there were no validated instru-

ments for measuring self-efficacy in ML, so we created a post-course survey instrument

based on validated instruments for measuring self-efficacy in general sciences, includ-

ing Children’s Science Curiosity Scale (CSCS) [46] and Modified Attitudes Towards

Science Inventory (mATSI) [135]. These references have been reliability validated

across gender, ethnicity, and income levels. The CSCS has an internal consistency

of .85 and test-retest reliability of .67-.69, and the mATSI demonstrates .70 reli-

ability using Cronbach’s alpha [51]. We also conducted qualitative assessments of
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student capstone projects using a top-down thematic approach for ML concepts and

a bottom-up emergent approach for ML skills.

Students consented to have their outputs from the course be used for research

purposes. The data sources used to determine the impact of the framework included

anonymous responses to pre- and post- course surveys, analysis of weekly assign-

ment grades, and analysis of capstone projects. The post-course survey had 12 Likert

scale items, 3 multiple answer/multiple choice items, and 3 free response items. These

questions were across three scales: self-efficacy, computational identity, and computa-

tional action. The scale for self-efficacy was divided into four subscales corresponding

to components of self-efficacy described by Bandura: mastery experiences, vicari-

ous experiences, persuasion/supportive messages, and physiological reactions. It was

designed to take approximately 30 minutes.

4.2 Application of Educational Theories and the ML

Education Framework

In the course design of Deep Learning Practicum, the key educational theories of self-

efficacy, constructionism, computational action, and experiential learning (previously

detailed in Chapter 2) were prominently employed to increase the accessibility of ML

technologies to a wider, less technical college audience. Items from the ML Education

Framework were also carefully built into the curriculum to reinforce the goals of the

course.

4.2.1 Experiential learning and Use-Modify-Create in Deep

Learning Practicum

Experiential learning exercises are combined with a capstone project through ITEST’s

Use-Modify-Create progression. We posited that Use-Modify-Create can help stu-

dents deepen their understanding of ML concepts and master practical skills. During

the first portion of the course, students learned about a variety of deep learning
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modules (i.e. convolutional neural networks, generative adversarial networks, em-

beddings). These modules were taught through the Use-Modify-Create progression.

First, students used ready-made ML models within fast-response and user-friendly

interfaces to develop high-level intuitions about training, testing, and the importance

of data. Then, students manipulated the models directly to understand how different

architectures, hyperparameters, and datasets impact results for different problems.

This led to having students complete coding exercises on TensorFlow.js where they

coded the models they had previously explored using graphical user interfaces. The

latter portion of the course was centered on student-led capstone projects — students

scoped a problem suitable for ML and created their own ML applications.

I will describe activities from the convolutional neural network (CNN) module in

the course to illustrate how experiential learning principles and Use-Modify-Create

were applied to teach technical units. First, students listened to a short technical

lecture (10-15 minutes) where they learned a bit about the filtering and mathematical

processes of how convolutional layers worked. Then, students played around with a

visualization webapp during the initial “Use” phase of the CNN module (see Figure 4-

1) [44]. This webapp allowed students to draw numbers and see how a CNN that had

been trained on MNIST classified those numbers. The CNN was pretty shallow (only

8 layers) and the webapp allowed students to visualize and unpack each layer of the

neural network. Students could also click and hover over each cell to see its input,

calculation, and output. Students experimented with different inputs and discussed

what they saw in the layers with their peers to gain an understanding about the

model and all of the different components of each layer. In lieu of digging deeply

into the mathematics of convolutional layers, students discussed questions such as

“What properties of the image may affect what filter sizes you should choose?”. These

conversations helped them get an intuition for how to design these models properly

(e.g. image size and the pen’s stroke size may affect how one would choose the number

of filters or filter sizes).

Next, students used the Model Builder webapp to move from the “Use” phase

to the “Modify” phase of their learning progression [55]. Model Builder is a public
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Figure 4-1: CNN Visualization Webapp from the “Use” phase of the learning progres-
sion for the CNN unit.

ML tool that allows users to drag and drop blocks of neural network layers to create

simple models. They can customize these layers and train their models on various

datasets, including MNIST (see Figure 4-2). The webapp also includes visualizations

and graphs for training and testing. This experiential learning tool helped students

gain more in-depth intuition about how model architecture (i.e. composition of layers,

depth, field size) and hyperparameters (i.e. learning rate, batch size, optimizer) affect

a CNN’s performance on a given dataset.

In the final part of the module, students were provided a TensorFlow.js template

that was organized in a very similar way to the Model Builder webapp. They were

challenged with modifying parts of the code to construct and train a model that could

achieve a certain accuracy on MNIST. This text-based coding experience was made

much less intimidating because the content of the code file is nearly directly translat-

able from the previous Model Builder tool that students had become so familiar with

(e.g all of the hyperparameters and layers of the neural network were organized in a
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Figure 4-2: Model Builder Webapp to move students from the “Use” to “Modify”
phase of the learning progression for the CNN unit [55].

similar way in the code file) (see Figure 4-3). As students work on the code template

or even start a new file, they move from the “Modify” to the “Create” stage of the

learning progression.

4.2.2 Self-Efficacy and Computational Action in Deep Learn-

ing Practicum

Deep Learning Practicum’s course design for teaching actionable ML emphasizes self-

efficacy and incorporates several mechanisms for engagement: empowering students,

creating meaningful experiences through scaffolded, inquiry-based learning, and au-

thentic learning opportunities [138]. The four components of self-efficacy were built

into the curriculum (see Figure 4-4), most notably through collaborative work with

classmates, work with near-peer mentors, and exposing students to ML professionals

of diverse demographics (gender, age, and race/ethnicity).

The course design of pairing students with industry mentors, inviting researchers

to give guest lectures, and the final project submission as an ML blog post all served

to help students develop computational identity as ML developers. By applying ML
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Figure 4-3: Coding in TensorFlow.jg to move students from the “Modify” to “Create”
phase of the learning progression for the CNN unit.

Figure 4-4: Components of self-efficacy as built into the Deep Learning Practicum
course design.

73



Figure 4-5: Focal (blue) and auxiliary (yellow) items from the ML Education Frame-
work that were built into the Deep Learning Practicum curriculum.

to problems that students personally care about, the resulting projects further engage

students and form a virtuous cycle capable of reinforcing and rewarding student

behavior. Interwoven with approaches to support engagement and the development of

self-efficacy, development of computational identity in the Deep Learning Practicum

addressed how learners can connect their personal learning to community spheres.

4.2.3 Course Intentions within the ML Education Framework

The goal of Deep Learning Practicum is to be a technical course that aims to develop

students into ML tinkerers who are able to hack at and build useful ML applications

for themselves, instead of being a technical course that tries to help students become

ML researchers or engineers who need to understand the detailed mathematics behind

deep learning. In accordance with these goals, we built 7 focal items from the ML

Education framework into the curriculum and also included 3 auxiliary items that

were lightly covered during the course (see Figure 4-5).

There were 2 focal items in Knowledge, 3 in Skills, and 2 in Attitudes that we

heavily built into Deep Learning Practicum. Under Attitudes, these are A3. Self-

Efficacy and A2. Identity and Community. Self-efficacy in ML was the primary goal
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of the courses and was built through hands-on, technical modules that employed the

Use-Modify-Create progression and through the final capstone project assignment.

Students developed a sense of identity as ML tinkerers through in-class discussions

about the ML artifacts they created throughout the course with a learning community

of their peers, as well as through interactions with mentors from industry.

Under Skills, Deep Learning Practicum focused on S1. through S3. for Problem

Scoping, Project Planning, and ML application creation. S1. and S2. were developed

through several assignments and activities where students attempted to scope out

several project ideas for ML with feedback from their peers and the course staff. For

the final project, they also submitted a detailed project proposal as well as proposals

for intermediary processes in creating ML applications (i.e. data collection, model

training).

Under Knowledge, Deep Learning Practicum hoped to teach K1. General ML

Knowledge and K2. Knowledge of ML Methods. Students gained clear understand-

ings of what ML is and the pipeline of how ML applications are created through

hands-on activities in building ML systems throughout the course. They learned a

range of deep learning and transfer learning methods for K2.

The auxiliary items of K3. Bias in ML Systems and K4. Societal Implications

of ML were included through several guest lectures by research and industry leaders

in these fields. Students were also sometimes assigned small portions of assignments

from the technical modules relating to these topics. The final auxiliary item, S6.

Independent Out-of-Class Learning, was indirectly built into the final capstone project

portion of the course since students almost always had to do extensive research on

datasets or ML methods for their capstone projects.

We hoped that the in-depth learning experiences from the focal and auxiliary

items would indirectly help students develop some ability in the remaining items.
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4.3 Transfer Learning for Empowering Beginners in

ML Application Creation

The ML method of transfer learning was prominently featured in the Deep Learning

Practicum curriculum and was at the core of how students with minimal program-

ming and ML knowledge were able to successfully create personally meaningful and

useful ML applications after only one semester. Transfer learning involves using an

existing machine learning model to train a new model specialized for a slightly differ-

ent task [99]. Although the design and testing of complicated model architectures is

inaccessible to most people, repurposing the trained model is accessible to developers

of all levels and students of any age. Starting with a powerful pre-trained model al-

lows new developers to apply deep learning to solve novel problems without the vast

computational resources and time needed to design model architectures and train and

test neural networks from scratch, which can take thousands of dollars and months

of time. Transfer learning has allowed machine learning enthusiasts to build their

own models using complex models as a starting point. In Deep Learning Practicum,

transfer learning was a technique taught from the first module. Even as students built

their own models from scratch in later units to develop their knowledge of specific

ML methods, most students used a combination of transfer learning techniques and

architecting their own smaller models in their capstone projects, which allowed them

to quickly create powerful, yet still personalized applications.

4.4 Deep Learning Practicum Version 1

The goal of the pilot version of the course was to engage students in a deeper under-

standing of the capabilities and limitations of ML through guided investigations and

open-ended experimentation, and to prepare students to develop capstone projects.

The course did not count towards core undergraduate requirements and was an elec-

tive course. In pre-registration, the instructors emphasized that the course was meant

for students who did not already feel comfortable working with machine learning and
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not experts hoping to gain more advanced techniques. Participating students regis-

tered for the course because of a personal interest in the topic and a desire to get

hands-on experience in ML. The class size was restricted due to the intensive, per-

sonalized, and project based nature of instruction. Twelve students completed the

course.

During the course, the instructors aimed to ground theoretical constructs of ML in

applications that spanned different topics. The 6 genres covered in the pilot included

both predictive and generative applications of ML. The instructors would give short

(not exceeding 15 minutes) explanatory technical lectures and provide in-class exer-

cises in TensorFlow.js for students to try on their own laptops. The activities often

leveraged existing datasets, pre-built models, and web-based tools for ML. During or

after each set of exercises, students were asked to discuss their findings with a partner

or with the whole class. Teaching assistants (TAs) and lab assistants (LAs) provided

technical and instructional support to the instructors during the exercises. There

were weekly take-home assignments that provided an extension to the environment

and the exercises introduced during class. The progression of genres followed the

historical development of ML, and thus presented a progression in the sophistication

of ML models themselves. There were 3 starter topics followed by 3 advanced topics.

The last 9 weeks of class were spent on capstone projects and guest lectures. Stu-

dents were asked to find a problem that personally interested them and was suitable

for a machine learning solution. Course staff and industry mentors were paired to

each project. Guest lectures from leaders in research and industry were interspersed.

A week-by-week map of the version 1 curriculum is presented in Table 4.1.

4.4.1 Student Demographics

The 12 students were diverse in academic level, major, and background. Two (17%)

were second-year students, 4 (33%) were third-years, 5 (42%) were fourth-years, and

1 (8%) was a graduate student. Nine students (75%) majored in EE/CS, 1 majored

in Math, 1 in Math and Physics, and 1 in Humanities. There were 3 Black women, 3
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Week Topics Progression
1 K-nearest neighbors Use: Teachable Machine webapp [118]. Modify:

Confidence algorithms in source code.
2 Multilayer Networks Use: Model Builder webapp [55]. Modify:

Starter TensorFlow.js and HTML code for pro-
gramming multilayer networks.

3 CNNs Use: Model Builder webapp, filter visualization
webapp [44], Fast Style Transfer webapp [88].
Modify: Starter code for programming CNNs.

4 Generative Models and Em-
beddings

Use: Embedding Projector webapp [125], Latent
Space Explorer [22]. Modify: Feature projection
functions in Latent Space Explorer source code.

5 GANs Use: GAN Playground webapp [87]. Modify:
Starter TensorFlow.js and HTML code for pro-
gramming GANs.

6 RNNs and LSTMs Use: Andrej Karpathy’s RNN text generation
webapp [64], SketchRNN webapp [43]. Modify:
Architecture and parameters in webapp source
code. Create: Music generation RNN application
through TensorFlow Python notebook.

7 Project Overview Create: Students scoped and presented 3 project
ideas.

8 Spring Break Create: Teams/individuals worked on the project
proposal writeup.

9 Project Mentor Matching,
Guest Lecture: ML in
Healthcare

Create: Teams submitted proposals and were
matched with industry mentors.

10 Guest Lecture: Fairness,
Guest Lecture: Testing and
Training Tools

Create: Teams work on projects.

11 Guest Lecture: Inter-
pretability

Create: Teams work on projects.

12 Project Midpoint Check-
point Presentations, Guest
Lecture: Music and Art

Create: Teams presented 5-minute project
progress reports in class, received feedback.

13 Guest Lecture: People and
AI Research

Create: Work on projects.

14 Final Presentation Dress
Rehearsal, Guest Lecture:
Adversarial Examples

Create: Teams presented a practice run of their
final 10-minute project presentations in class, re-
ceived feedback.

15 Final Presentation Show-
case, Project Writeup Due

Create: Present projects in front of industry pro-
fessionals and submit project writeups in the form
of instructional blog posts.

Table 4.1: Spring 2018 week-by-week curriculum annotated with the ITEST Use-
Modify-Create progression.
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Asian men, 2 Asian women, 2 White or Caucassian women, and 1 White or Caucassian

man. Ten students (83%) had taken an introductory or online course in AI or ML,

and commented in the pre- survey that they wanted to take this introductory course

because they did not feel that they had the ability to build practical applications. Two

students (17%) had no course experience in AI or ML. Four students (33%) had no

experience in JavaScript, 2 (17%) had some experience, and 6 (12%) had significant

experience.

4.4.2 Teaching Staff and Industry Mentors

There were 6 TAs/LAs with no differentiation in the roles. The staff were instrumen-

tal in debugging in-class exercises for each topic, answering questions, and leading

reflective discussions that helped students achieve learning goals for the exercises. For

the 9 projects in the class, 3 of the TAs/LAs mentored 1 project each and 3 mentored

2 projects each. There were 9 industry mentors. We reached out to companies and

researchers in the area to ask for volunteers who have experience with ML projects.

We invited all volunteers to a mixer with the students after project teams had formed.

At the beginning of the mixer, each mentor gave a brief overview of their expertise

and each student team summarized their project goals. After the mixer, student

teams submitted their preferences for mentors and were matched. Mentors mostly

met with teams during the beginning and middle of their project cycles to help with

higher level ideas, resources, and project scoping.

4.4.3 Capstone Projects

Within this “Create” stage of the course, students marshaled the tools and techniques

at their disposal along with mentor feedback to create capstone projects. Instructors

emphasized that students should choose a project that they were personally interested

in, but also cautioned that “a realistic project implemented well and evaluated thor-

oughly is better than a half-implemented ambitious project with no result.” Projects

could either be a real-world “Application” of ML, an “Exploration” of properties
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of neural networks, or a “Replication” of an ML paper. To help scaffold project

scoping, students were given a “3 Ideas” assignment in which they were required to

present 3 project ideas to the class. For each idea, students defined a “Safe” goal

that they were confident they could achieve by the end of the semester, a “Target”

goal that they hoped to achieve, and a “Stretch” goal that would be good to achieve

if extra time was available. Students were given time after the presentations to talk

with others in the class and optionally find a partner.

There were 9 total project groups consisting of 3 pair projects and 6 solo projects.

7 projects were in the “Application” category, 1 in “Replication,” and 1 in both “Appli-

cation” and “Exploration.” All teams achieved the “Safe” goal for their project. One

team continued working on their project with their industry mentor after the class

and was able to publish a paper.

4.4.4 Learnings from Version 1 that Informed Version 2

Feedback was obtained through the post- survey and a discussion-style post-mortem

on the last day of class. Due to the small class size, quantitative analysis of weekly

assignment grades and survey responses are not presented. Overall, students loved

the interactive lab style of the modules portion of the class. Two students with no

prior JavaScript experience felt that the course was surprisingly language-independent

and that JavaScript knowledge was not required, although some coding experience

would be helpful. Students felt that the small class size was beneficial in creating

a relationship between students and staff that made them feel comfortable speaking

up during the open reflective discussions that accompanied in-class exercises. Nearly

every student felt that there was not enough time for project implementation, but

students also said that it was the most valuable and enjoyable part of the course.

Students suggested that the modules portion of the class should cover data collection,

web scraping, data processing, and connecting to computational resources to better

scaffold the projects. Students enjoyed the guest lectures and thought that they

helped “put what we learned into a much bigger picture.” Students noted that some

guest lectures may have been helpful before starting their final projects and would
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have provided additional context for final project choices.

Several students said that the course demystified the field of machine learning and

made it more approachable. Two students mentioned their increased concern over bias

in machine learning algorithms as well as a deeper understanding of how to resolve

some of these issues. One wrote: “Before this course, I thought of computer programs

more linearly – as if computer programmers were mostly in control of a program’s

results. Now I have a much greater understanding of how machine learning programs

can be biased and unfair... I learned the importance of providing good, varied input

data and how this data can have a significant impact on a network and ultimately the

world.”

4.5 Deep Learning Practicum Version 2

4.5.1 Changes from Version 1

The second version of Deep Learning Practicum was offered at Massachusetts Institute

of Technology in fall 2018, the semester following the pilot. There were 6 main

changes from version 1: (1) the final project was introduced at the beginning of the

semester and ran in parallel to the modules portion of the course, (2) there were

two additional scaffolding workshops for the final project (data mining and using

computing clusters), (3) students were required to have a partner for their project

unless given permission, (4) guest lectures were more interspersed throughout the

course instead of all at the end, (5) the staff-to-student ratio decreased from 6:12 to

6:26, and (6) an additional unit on reinforcement learning was added. The full set of

version 2 curricula, lectures, assignments, and final projects can be found online at

mit.edu/6.s198 [70]. A week-by-week map of the version 2 curriculum is presented

in Table 4.2.
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Week Topics Progression
1 K-nearest neighbors, Trans-

fer learning
Module same as version 1 week 1 with more
emphasis on transfer learning techniques.

2 Multilayer Networks,
projects overview

Module same as version 1 week 2. Create:
Scope 3 ideas for capstone final project.

3 CNNs, guest lecture Module same as version 1 week 3. Modify:
Starter adversarial example TensorFlow code
from guest lecture.

4 3 Ideas project workshop,
Data Mining workshop

Use: Kaggle to find datasets [54]. Modify:
3 project ideas based on feedback. Create:
Web scraping scripts using Beautiful Soup
[86].

5 Generative Models and
Embeddings, Computa-
tional Resources workshop,
Project mentor matching

Module same as version 1 week 4. Use:
The Massachusetts Green High Performance
Computing Center tutorial [80].

6 GANs Module same as version 1 week 5.
7 Project Data Review, Rein-

forcement Learning
Use: Metacar webapp [127], OpenAI Gym
webapps [98]. Modify: TensorFlow starter
code for RL. Create: Data review document
to describe project dataset details.

8 RNNs and LSTMs Module same as version 1 week 6.
9 Informal project checkpoint Create: Work on projects and discuss

progress with staff.
10 Guest lectures Create: Work on project proposal.
11 Formal project checkpoint Create: Work on projects and show basic

working demo to staff.
12 Guest lecture, Project prac-

tice lightning talks
Create: Present 2-minute project lightning
talks, receive feedback for final showcase.

13 Office hours Create: Work on projects.
14 Final Presentation Show-

case
Create: Presented capstone projects to
an audience of varying ML experience with
lightning talks, then individual booths.

15 Project Writeup Due Create: Submit project writeups in the
form of instructional blog posts.

Table 4.2: Fall 2018 week-by-week curriculum annotated with ITEST’s Use-Modify-
Create progression.
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4.5.2 Student Demographics

Of the 26 students, there were 5 (19%) second-years, 6 (23%) third-years, 11 (42%)

fourth-years, 3 (12%) graduate students, and 1 (4%) post-doc. Twenty students (77%)

majored in EE and/or CS, 2 (8%) in Architecture, 2 (8%) in Physics and EECS, 1

(4%) in Materials Science and Engineering, and 1 (4%) in Biological Engineering

and Math. There were 9 (35%) Asian women, 6 (23%) Asian men, 5 (19%) White

or Caucassian men, 3 (12%) Hispanic men, 1 (4%) Black woman, 1 (4%) White

or Caucassian woman, and 1 (4%) Black man. Similar to the previous offering, 21

students (81%) had taken an introductory course in AI or ML, but commented that

they wanted to participate in the course due to self-perceived lack of ability to apply

theory and math in building practical applications.

4.5.3 Capstone Projects

For the second offering, students were required to find a partner for the final project

unless otherwise approved due to the decrease in the staff-student ratio and the suc-

cesses from the pilot. There were 14 projects, all of which completed their “Safe” goal.

All three project categories were represented with the majority being “Application”

projects. More projects bridged multiple project categories than in the first iteration,

likely due to students having more time. Students started to work on final projects

in week 2 of the course, so they had not been exposed to all of the topic modules.

The instructors were concerned that students may avoid later topics and tried to

mediate this by giving lightning talks and sample use cases for the topics that would

be presented later.

The first project workshop was the 3 Ideas Workshop during week 4, which

changed in format from the pilot due to the increased number of students. The

staff ran two 30-minute sessions of guided group presentations. For each session, the

class was divided into four groups of 5-6 students based on shared project topic in-

terests. One to two TAs/LAs led each group, where students took turns presenting

their 3 ideas. During the final 30 minutes of the class, students were encouraged to
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talk to others they had met and form groups. After the 3 Ideas Workshop, there

were two workshops given on project skills: data collection and how to connect to

computing resources. There was also a data review checkpoint assignment due in

week 7 to confirm that students had completed data collection and processing in a

timely manner.

4.6 Findings and Analysis

Responses to the optional post-course survey and all of the student capstone projects

informed the analysis of the course. The post- survey was emailed out after the end

of the course and received 17 responses (65%). Survey demographic results indicated

that the students who took the survey were fairly representative of the class in terms

of diversity and experience. All grade levels and majors of course-takers were repre-

sented. There were 1 sophomore, 5 juniors, 9 seniors, and 2 graduate students. There

were 12 students majoring in EE/CS, 2 in Physics and EECS, 1 in Materials Science

and Engineering, 1 in Architecture, and 1 in Mathematics and Biological Engineering.

12 (71%) students who took the survey were men and 5 (29%) were women. 10 were

Asian (59%), 3 were White or Caucasian (18%), 2 were Hispanic (12%), and 2 were

Black (12%). There were 14 completed projects in the class. One student was given

permission to do a solo project based on the scope of the work. Another student had

a partner who dropped the class.

I will discuss the results in five sections: as pertaining to projects, development of

self-efficacy (A3), knowledge of ML methods (K2), ability to perform skills relating

to ML application creation (S1-S3), and Identity and Perceptions (A1, A2).

4.6.1 Project Themes and Approaches

The end-of-course survey asked respondents to indicate how they chose the topic for

their capstone project. Twelve students (71%) indicated that they chose their topic

based on technical interest, 8 (47%) on a personal hobby, 4 (24%) on perceived use-

fulness in career/research, 3 (18%) on social good, and 3 (18%) followed their project
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partner’s interests. The end-of-course survey also provided evidence of mastery over

ML concepts and skills through creating final projects. When asked "Which of the

following elements from the course did you use in your project work?", the responses

were as follows:

∙ “I used concepts/architectures from the units”: 14 (82%)

∙ “I used independent researching skills that I developed through the assignments”:

10 (59%)

∙ “I used the 3 Ideas Workshop to help me improve or refine my project idea”: 10

(59%)

∙ “I used techniques from the Data Gathering workshop”: 7 (41%)

∙ “I used coding skills that I developed through the assignments”: 6 (35%)

∙ “I used debugging skills that I developed through the assignments”: 6 (35%)

∙ “I used the 3 Ideas Workshop to help me find a partner”: 6 (35%)

∙ “I used code directly from class assignments”: 1 (6%)

Three of the 14 projects are detailed below to show the variety of project cate-

gories, topics, and methods used.

Project 1: Generating Virtual Worlds

This was a pair Application project by one non-EECS student and one EECS with

the goal of creating new video game environments. The students were motivated

by a recent video game that had algorithmically generated 18 quintillion planets for

players to explore and expressed amazement that "infinite unique possibilities can be

created with [relatively little] work from humans" through procedural generation.

The project used an ensemble method. They trained a Generative Adversarial

Network on terrain heightmaps to create the base height maps for the new world,
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and then passed the results through a fast style transfer program trained on Earth

satellite images to obtain a color mask for the base terrain.

The team identified websites that provided free terrain heightmap images and

color satellite images. They did not have experience with web scraping and received

external scripting help to avoid manually downloading the images. They collected

10,000 black-and-white heightmaps and 56,000 satellite images.

The students designed 13 different versions of their GAN for generating the base

terrain heightmaps, with modifications to architecture and hyperparameters. They

scaled the training images down to 256x256 pixels to decrease training time. To add

color and texture to these black-and-white height maps, the team used style transfer,

which refers to the concept of taking a content image and a style image and combining

the features to produce an output image with the content of one image and the style

of another [38]. The team started by feeding an open source Fast Style Transfer

model 512x512 pixel color satellite images [30], but found that they were quickly

running out of memory before the program could begin training. To address storage

and time constraints, the team modified the hyperparameters of the model, rescaled

the training images to 128x128, and decreased the number of images from 56,000 to

28,000. They also debugged a severe artefact issue by replacing transpose convolution

layers with bilinear image upscaling, which significantly modified the architecture of

the original Fast Style Transfer model.

For the final demo, the team was able to generate colorful worlds that they im-

ported into a gaming environment so that a player could drive around and explore the

terrain. They also experimented with how their model translated into the physical

world via 3D printing (see Figure 4-6)

Through analysis of the team’s project write-ups, presentation, and demo, Fig-

ure 4-7 shows how the project engages with various aspects of the ML Framework. It

demonstrated high engagement with the 2 Knowledge items, 4 Skills, and 2 Attitudi-

nal items highlighted in yellow and some engagement with the 1 Skill and 1 Attitudi-

nal item highlighted in blue. The project was rather technical and implementation-

focused, which required high engagement with K1. General ML Knowledge, K2.
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Figure 4-6: “Generating Virtual Worlds”: Final game environment outputs displayed
in Unity3D. Left: Colored heightmap 1, Right-top: Uncolored heightmap 2, Right-
bottom: 3D printed heightmap 3.

Knowledge of ML Methods, and S1.-S3. Skills associated with creating ML applica-

tions. The students also did significant research into training and modifying GANs

and the Fast Style Transfer model outside of class (S6. Independent Out-of-Class

Learning). The selection of the project topic and successful implementation indi-

cated high levels of A1. Interest and A3. Self-Efficacy.

Figure 4-7: Analysis of engagement with the ML Education Framework in student
project “Generating Virtual Worlds”. Items of high engagement are in yellow, items
with some engagement are in blue, and all other items are in gray.

The following concepts (sub-items under K2. Knowledge of ML Methods) from

the modules portion of the class were heavily used in this project:
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∙ Multilayer Networks: Linear and activation layers were used to build the

GAN model and to modify the Fast Style Transfer model.

∙ Convolutional Neural Networks: CNN layers were used to build the GAN

model and in the Fast Style Transfer model.

∙ Generative Adversarial Networks: A GAN was used to generate new im-

ages.

The following skills introduced through exercises and homework assignments from

the modules portion of the class were heavily used in this project, as indicated by the

student’s reflection in their writeup:

∙ Choosing Models(sub-skill of S2. ML Project Planning): The team found

Fast Style Transfer suitable for the problem at hand and used it as a core piece

of the latter half of their project.

∙ Modifying Models (sub-skill of S3. Creating ML Artifacts): The team sig-

nificantly modified the architecture of the Fast Style Transfer model to debug

artefacts that arose.

∙ Modifying Learning Rates, Modifying Layer Hyperparameters, and

Modifying Batch Sizes (sub-skills of S3. Creating ML Artifacts): "...tweaks

include changing the discriminator and generator’s learning rates, number of

layers, type of layers, convolutional filter sizes, and image batch size."

∙ Creating Models (sub-skill of S3. Creating ML Artifacts): The team created

their own GAN model.

∙ Creating Loss Functions (sub-skill of S3. Creating ML Artifacts): "Getting

the distance between [the new style image’s gram matrix] and the original style

gram matrix gives us the style loss. A similar procedure can be done to find

content loss. The model calculates the total loss by summing these two values."
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∙ Training and Testing (sub-skill of S3. Creating ML Artifacts, and S4. Anal-

ysis of ML Design Intentions and Results): Both models trained over several

epochs. Testing was objective in terms of how “cool” the output worlds looked

from the perspective of the creators.

Project 2: Analyzing Racial Bias among Politicians’ Tweets on Mass

Shootings

This was a solo Exploration project by a non-EECS student with the goal of an-

swering the questions: "How do elected politicians characterize perpetrators of mass

shootings differently?" and "Does this correlate with established racial stereotypes?"

The student obtained a dataset by sorting through a database of tweets authored

by members of the 115th Congress, filtered by hashtags for recent mass shootings

and keywords such as "shooting", "attacker", and "gun". The student experimented

with training a word embedding model from scratch and using transfer learning on

the Google word2vec model trained on the Google News Corpus [81]. After training

the final model using transfer learning, the student used methods from the Word

Embedding Association Test (WEAT) to analyze the relationship between certain

bias-indicative terms and the political party of the author [62]. WEAT was an algo-

rithm that she researched and discovered outside of class to apply to this project.

The student found correlations such as: "Democrats associated sadness with the

shooter where Republicans associated anger...Democrats characterize shooters more

often as being alone where Republicans characterize them as part of a group...there

is a nearly but not quite significant suggestion that Democrats associate shooters

with the thug stereotype slightly more than Republicans." The student did not have

enough time to compare results based on the shooter’s race, but outlined how their

model and process would be modified in future works (see Figure 4-8).

Through analysis of the student’s project write-ups, presentation, and demo, Fig-

ure 4-9 shows how the project engages with various aspects of the ML Framework.

It demonstrated high engagement with the 3 Knowledge items, 4 Skills, and 2 At-

titudinal items highlighted in yellow and some engagement with the 2 Skills and 1
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Figure 4-8: “Analyzing Racial Bias among Politicians’ Tweets on Mass Shootings”:
Model and process map.

Attitudinal item highlighted in blue. This project was not very focused on creating

ML applications. Instead, the student was more involved in applying different ML

tools to analyze a set of data that addressed a problem that she was very passionate

about. This led to high engagement with S5. ML Advocacy, K4. Societal Implica-

tions of ML, and S6. Independent Out-of-Class Learning. She also expressed high

levels of A1. Interest in ML through her exploration of her chosen topic and also had

high A3. Self-Efficacy in ML.

The following concepts (sub-items under K2. Knowledge of ML Methods) from

the modules portion of the class were heavily used in this project:

∙ Transfer Learning: The student used transfer learning on word2vec to train

the final model.

∙ Multilayer Networks: The student built a simple neural network on top of

word2vec for transfer learning.

∙ Embeddings and Generative Models: The student used word embeddings

and WEAT for her analysis.

The following skills introduced through exercises and homework assignments from
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Figure 4-9: Analysis of engagement with the ML Education Framework in student
project “Analyzing Racial Bias among Politicians’ Tweets on Mass Shootings”. Items
of high engagement are in yellow, items with some engagement are in blue, and all
other items are in gray.

the modules portion of the class were heavily used in this project:

∙ Choosing Datasets (sub-skill of S2. ML Project Planning): The student

found a suitable pre-compiled dataset of tweets to work from.

∙ Creating Datasets (sub-skill of S3. Creating ML Artifacts): The student

algorithmically filtered through a dataset to create a custom dataset for the

project.

∙ Choosing Models (sub-skill of S2. ML Project Planning): The word2vec

model trained on the Google News corpus was selected for transfer learning.

∙ Using Models (sub-skill of S3. Creating ML Artifacts): The student used the

results of the word embeddings model in a critical way to calculate effect values

and p-values for relevant terms.

∙ Training and Testing (sub-skill of S3. Creating ML Artifacts, and S4. Anal-

ysis of ML Design Intentions and Results): Analogy completion was selected

as an external standardized metric to evaluate the performance of trained word

embeddings models.
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Project 3: Adversarial Infill

This was a team Replication project by two EECS students with the goal of ex-

ploring local and non-local methods for semantic infilling. Specifically, the students

wanted to try to re-implement and improve on the GAN infilling method using Ten-

sorFlow [139]. The team used the publicly available CelebA dataset that was also

used in the original paper, which contains 202,599 images of celebrity faces [75]. The

students found that “the biggest issue with this infilling method is that the boundary

region is obvious to the naked eye”, and in order to improve upon this issue, they

designed their own loss function that included a boundary blending loss, “which min-

imizes pixel differences around rectangular masked borders”. The team did research

on various GAN implementations and successfully built and trained a GAN that had

4 convolutional layers in both the generator and the discriminator. They tested center

mask, random mask, and pattern mask on their model using the CelebA dataset and

were able to achieve results that were smoother than prior methods. For the final

showcase, the team took pictures of audience members, ran a center mask, and had

their model infill the missing piece as a live demo (see Figure 4-10).

Figure 4-10: "Adversarial Infill": Example of the model running on a laptop webcam
photo over several iterations.

This project engaged with the ML Framework in similar levels to the “Generating

Virtual Worlds” Application project (see Figure 4-7). The project was ideated as an

extremely technical research project that the students took as a fun challenge, and it

required high engagement with K1. General ML Knowledge, K2. Knowledge of ML

Methods, and S1.-S3. Skills associated with creating ML applications. The students

also did significant research into designing loss functions and creating GANs outside of
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class (S6. Independent Out-of-Class Learning). The selection of the project topic and

successful implementation indicated high levels of A1. Interest and A3. Self-Efficacy.

The following concepts (sub-items under K2. Knowledge of ML Methods) from

the modules portion of the class were heavily used in this project:

∙ Convolutional Neural Networks: The layers of the generator and discrimi-

nator were made up of 2D CNNs.

∙ Generative Adversarial Networks: A GAN was used for adversarial infill-

ing.

The following skills introduced through exercises and homework assignments from

the modules portion of the class were heavily used in this project:

∙ Choosing Datasets (sub-skill of S2. ML Project Planning): The team found

and used the public CelebA dataset.

∙ Choosing Models (sub-skill of S2. ML Project Planning): The team chose to

replicate the GAN infilling paper after looking at several other techniques.

∙ Creating Models (sub-skill of S3. Creating ML Artifacts): The team coded

their own GAN model based on literature: "On account of the fact that ad-

versarial training is delicate, and all GANs are variations of Ian Goodfellow’s

original GAN, it was useful to use an existing GAN implementation."

∙ Modifying Loss Functions (sub-skill of S3. Creating ML Artifacts): The

team learned from literature to "update the generator’s loss twice for every

discriminator update; this is based on the diminished gradient problem where

the discriminator loss converges to zero."

∙ Creating Loss Functions (sub-skill of S3. Creating ML Artifacts): The team

created a 3-part loss function to account for context, realistic perception, and

boundary blending.

∙ Modifying Learning Rates and Modifying Batch Sizes (sub-skills of S3.

Creating ML Artifacts): Experimentally, the team found that "the best learning
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Item 𝜇 𝜎
1 I felt that I was successful in this class. 4.4 0.6
2 I am proud of what I was able to accomplish in my final

project.
4.2 0.8

3 I will be able to complete a ML project (of a similar level and
scale to my final project) on my own.

4.6 0.5

4 In this class, I saw people like me succeed at learning ML. 4.2 0.6
5 When I saw people like me succeed in ML, it made me feel

that I could succeed as well.
4.3 0.7

6 How confident do you feel about describing your project to a
non-technical person?

4.6 0.5

7 The project work made me feel uncomfortable 1.6 0.9

Table 4.3: Means and standard deviations of post- survey linear scale question re-
sponses.

rate for [the] Adam optimizer was 0.0001. Also, a batch size of 32 worked better

than 64."

∙ Training and Testing (sub-skill of S3. Creating ML Artifacts, and S4. Anal-

ysis of ML Design Intentions and Results): The team conducted many experi-

ments and found that "overfitting usually started to occur after 30 epochs" and

tested the results of their models subjectively and by looking at the results of

loss functions.

4.6.2 Self-Efficacy

In this subsection we describe student outcomes associated with each of the four com-

ponents of self-efficacy: mastery experiences, vicarious experiences, persuasion/supportive

messages, and physiological reactions. See Table 4.3 for a summary of all responses

to the linear scale questions on the post-course survey, where 5 = “Strongly agree” or

“Completely confident” and 1 = “Strongly disagree” or “No confidence.”
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Mastery experiences

Mastery experiences are task-specific experiences of success and are the primary con-

tributor to one’s self-efficacy beliefs. Students with high self-efficacy believe they are

able to complete tasks similar or closely related to the task that served as the ba-

sis for the mastery experience. The instructors sought to raise students’ self-efficacy

through "mastery experiences" that increased their knowledge and skills. A set of free

response, checkbox, and linear scale questions on the end-of-course survey captured

students’ self-efficacy in ML.

An item that was particularly relevant to self-efficacy was Question 1 of Table 4.3,

a Likert scale question for the statement: "I felt that I was successful in this class."

Of the respondents, 47% strongly agreed, 47% agreed, 6% neither agree nor disagree,

and 0% disagree or strongly disagreed (see Figure 4-11a). As a follow-up to Question

1, students were asked "What did you use to determine your sense of success in the

class?" Respondents attributed their sense of success most with work on the final

project (94%), which is most associated with A3. Self-Efficacy. They also associated

their feelings of success with understanding the concepts presented in class (88%),

which is associated with the Knowledge items from the ML Education Framework,

and work on assignments (47%), which is associated with the Skills from the ML

Education Framework. One student said that “Personal learning ability progression

and ability to utilize the learning from topics to learn even more” was also a factor,

which is associated with S6. Independent Out-of-Class Learning (see Figure 4-11b).

This focus on project work in boosting students’ feelings of success in ML is very

much in-line with theories of computational action and constructionism.

Perhaps most importantly with respect to the development of A3. Self-Efficacy,

65% of respondents strongly agreed and 35% agreed with the statement "I will be

able to complete an ML project (of a similar level and scale to my final project) on

my own." (see Figure 4-12).

Responses to the question "How do you see yourself using the tools, techniques,

and methods presented in the class?" reinforced the high A3. Self-Efficacy signals.
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(a) Responses to Likert scale question: “How much do you agree with this statement: I felt that I
was successful in this class.” with standard error bars.

(b) Responses to multiple choice multiple response question: “What did you use to determine your
sense of success in this class?” with standard error bars.

Figure 4-11: Likert scale responses to questions relating to feelings of success.
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Figure 4-12: Responses to Likert scale question: “How much do you agree with this
statement: I will be able to complete a ML project (of a similar level and scale to my
final project) on my own.” with standard error bars.

The results also indicate that students developed Attitudinal items as well as a sense

of usefulness for the Skills they learned through the class. All respondents selected

more than one checkbox and none of the respondents chose “I do not care much about

using this technology”:

∙ 82% Applying ML to new domains (S3. Creating ML Artifacts)

∙ 77% Be(ing) able to talk about it with experts (S5. ML Advocacy)

∙ 77% Being able to talk about it with non-experts (S5. ML Advocacy)

∙ 65% Using it for fun (A1. Interest)

∙ 65% Developing my final project further (A4. Persistence)

∙ 65% Using it as part of an assignment for another class (S3. Creating ML

Artifacts, A4. Persistence)

∙ 65% Using it as part of a job (S3. Creating ML Artifacts, A4. Persistence)
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∙ 35% Developing new ML algorithms and/or architectures (S3. Creating ML

Artifacts)

∙ 0% I do not care much about using this technology

Vicarious Experiences

Opportunities for vicarious experiences (or seeing others like oneself being successful)

were strategically designed into the course. In-class discussions, project demonstra-

tions, project mentors, and guest speakers served as potential "like me" candidates.

Two items in the end-of-course survey captured students’ responses to these interven-

tions. When given the item: "In this class, I saw people like me succeed at learning

ML," 29% strongly agreed; 59% agreed; and 12% neither agree nor disagree. When

given the item: "When I saw people like me succeed at ML, it made me feel that I

could succeed as well," 41% strongly agreed, 47% agreed, and 12% neither agree nor

disagree. Interestingly, two students who agreed (4) with the first item (“In this class,

I saw people like me succeed at learning ML”) strongly agreed (5) with the second

item (“When I saw people like me succeed at ML, it made me feel that I could succeed

as well”). These results indicate that even light vicarious experiences contribute to

students’ sense of possibility towards ML (see Figure 4-13).

Persuasion and Supportive Messages

Another component of self-efficacy is persuasion, or the extent students feel support

and encouragement from "trusted others." Three questions on the end-of-course sur-

vey addressed this construct. The first asked students their level of agreement with

the statement: "I know I was successful in my project work because other people

told me so." 12% of respondents strongly agreed, 53% agreed, 29% neither agree nor

disagree, and 1 respondent (6%) strongly disagreed with the statement. Another

question asked students their level of agreement with the statement: "Other students

in the class helped me learn the technical material." 24% strongly agreed, 47% agreed,

and 29% neither agree nor disagree. When asked "If you had a project partner at the
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(a) Likert scale responses to: “In this class, I saw people like me succeed at learning ML.” with
standard error bars.

(b) Likert scale responses to: “When I saw people like me succeed in ML, it made me feel that I
could succeed as well.” with standard error bars.

Figure 4-13: Likert scale responses to questions relating to in-class peers.
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end of the semester, how would you describe their impact on your learning?", 52.9%

of students selected "My partner greatly helped with my learning", 23.5% selected

"My partner was reasonably helpful to my learning", and 11.8% selected "My partner

neither helped nor hindered my learning". No respondent selected "My partner was

detrimental to my learning".

Physiological Response

Negative physiological responses to presenting one’s work (such as feeling ill or having

butterflies, sense of unease) has been shown to be detrimental to one’s self-efficacy.

The course created a casual, friendly space for exploring new concepts, tools, and

ideas, thus minimizing the potential for negative physiological responses. The end-of-

course survey asked: "How confident do you feel about describing your project to a

non-technical person?" 59% of respondents reported feeling completely confident and

41% reported feeling confident. The second question asked the respondents how much

they agreed with the statement: "The project work made me feel uncomfortable."

Responses ranged from strongly disagree (59%), disagree (29%), neither agree nor

disagree (6%), to agree (6%). The final question in this grouping asked how much

students agreed with the statement: "Presenting my project in front of an audience

made me feel uncomfortable." 53% of respondents strongly disagreed, 41% disagreed,

and 6% neither agreed nor disagreed with this statement.

Students also reported feeling pride in their work: 47% strongly agreeing, 29%

agreeing, and 24% neither agreeing nor disagreeing with the statement "I am proud

of what I was able to accomplish in my final project." (see Figure 4-14).

4.6.3 Mastery of ML Methods

Eight knowledge concepts (K2. Knowledge of ML Methods) were taught during the

modules portion of the course over 7 units. Analysis of lab grades yielded information

on the degree of success students had learning the 8 ML topics taught during the

modules portion of the course. The instructors deemed that a grade of .6 to .7
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Figure 4-14: Likert scale responses to: “I am proud of what I was able to accomplish
in my final project.” with standard error bars.

indicated low mastery; .7 to .8 indicated middle mastery; a .8 to .9 indicated high

mastery; and .9 to 1.0 indicated expert mastery (see Table 4.4). High standard

deviations can be attributed to the number of students who did not complete a

substantial portion of the weekly assignment.

The subsequent use of these concepts in capstone projects were indicative of sec-

ondary mastery experiences. A top-down thematic approach was used to annotate

Week Concepts 𝜇 𝜎
1 KNN and Transfer Learning 0.85 0.28
2 Multilayer Networks 0.89 0.17
3 CNNs

Sub-concept: Multilayer Networks
0.71 0.37

4 Generative Models and Embeddings 0.79 0.34
5 GANs

Sub-concepts: CNNs, Multilayer Networks
0.78 0.32

6 Reinforcement Learning 0.80 0.40
7 RNNs and LSTMs 0.77 0.37

Table 4.4: Units, core topics addressed, and means and standard deviations of student
scores.
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Figure 4-15: Concept used per number of projects.

project write-ups, demos, and presentations for the concepts utilized. All 8 knowledge

concepts were represented in at least one project (see Figure 4-15). It is important to

note that the project topic strongly influenced which concepts students applied. From

this analysis, we present the top 5 core concepts to educating students in actionable

ML across various applications: Transfer Learning, Multilayer Networks, Convolu-

tional Neural Networks, Embeddings and Generative Models, and Recurrent Neural

Networks and Long Short-Term Memory.

4.6.4 Mastery of ML Artifact Creation Skills

Two post- survey questions assessed students’ critical, practical, and action-oriented

abilities in ML. When asked how they determine whether or not a problem can

and should be solved using ML (S1. ML Problem Scoping), students said that ML

could be used when past data is a predictor for future results. Many students also

mentioned the importance of data in their response: 11 (65%) described the need for

sufficient data and 2 (12%) wrote about data quality, citing concepts such as proper

labeling, consistency, and parsability. Five students (29%) wrote that they would

look at existing models/research for applicability to a problem. One student each

wrote about the ability of the problem to accept error, the need for computational
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resources, and the importance of ethical considerations. Interestingly, 4 students

(24%) wrote that they would not use ML when the problem could be solved

using algorithmic or analytical methods. Students may have become wary of

ML as an inaccurate, unexplainable technique rather than a silver bullet.

Students were asked to describe the general process of creating an ML solution to a

suitable problem (S2. ML Project Planning). There were two main methods of attack.

The first mode was input/output-centric. Eight students (47%) described a process

that focused on defining the data and output before figuring out what architectures

and computing resources to use. An example response of this type was: “acquire as

much data as possible -> understand the data (and actually spend a lot of time here)

-> clean the data to suit purpose and remove anything negative or skewing and figure

something out for missing data -> figure out the model that works -> implement the

model using the right architecture. don’t forget to use the right loss and a validation

data to confirm results -> train the model -> iterate back to architecture a couple

times -> publish model somewhere. maybe other ppl can give insights. if one can

sit with a professional for any step on this, that’d be great becaue they won’t fall

for same dumb mistakes”. The second mode was model-centric. Six students (35%)

wrote that they first looked at industry standard models or similar solutions from

research before experimenting upon the prior work. An example response of this type

was: “Setup the problem such that you know what problem you are trying to solve.

Start with the industry standard regarding models, if this problem has been tackled

earlier (using CNNs for example) or something similar has been done. Experiment

with different architectures, and finally settle on the one that does the best. Take

that architecture and then work towards improving the performance”. The rest of the

responses mentioned that designing the model can be unpredictable and takes a lot

of trial and error.

It was not known in advance which sub-skills taught during the course would be

the most useful for capstone project work, so all of the projects were analyzed to

identify salient sub-skills. A bottom-up emergent approach was used to annotate

sub-skills as evident from project write-ups, demos, and presentations. 21 sub-skills
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were distilled from the analysis and can be sorted under 6 categories.

The first category is “problem set-up” (correlated to S1. ML Problem Scoping)

and includes the skills “scoping a problem” and “modifying a problem”: for example,

deciding to reimplement and expand on the goals of a research paper.

The second category is “data” and includes the skills “choosing datasets”; “choosing

features”: isolating specific features of data for training; and “creating datasets”: this

includes scraping the web to curate a dataset or significantly processing a pre-compiled

dataset. These items encompass both S1. ML Problem Scoping and S2. ML Project

Planning.

The third category is “architecture” and includes “choosing models” (correlated

to S2. ML Project Planning), “modifying models” (correlated to S3. Creating ML

Artifacts), and “creating models” (correlated to S3. Creating ML Artifacts).

The fourth category is “hyperparameters” (correlated to S3. Creating ML Arti-

facts) and includes “choosing optimizers”, “modifying optimizers”, “choosing loss func-

tions”, “modifying loss functions”, “creating loss functions”, “modifying learning rates”,

and “modifying batch sizes”.

The fifth category is “analysis” and includes “using filters” and “training and test-

ing”. These items encompass both S3. Creating ML Artifacts and portions of S4.

Analysis of ML Design Intentions and Results.

The sixth category consists of “specific skills for reinforcement learning” (correlated

to S3. Creating ML Artifacts) and includes “creating reward functions”, “creating an

environment”, “creating state spaces”, and “creating agents”.

The level/action descriptor for a sub-skill was based off of the Use-Modify-Create

progression with the addition of “Choose”. We found that searching and selecting from

a set of tools, techniques, and data entails more significant discernment and judgment

than simply knowing how to use a model or dataset that is pre-selected and provided.

A summary of the number of projects that used each sub-skill is shown in Figure 4-16.

From this analysis, the top 8 core sub-skills found to be essential in educating

students to develop self-efficacy in ML are: “scoping a problem”, “choosing datasets”,

“creating datasets”, “choosing models”, “modifying models”, “creating models”, “mod-
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Figure 4-16: Skill used per number of projects.

ifying learning rates”, and “training and testing”.

4.6.5 Identity and Perceptions

A goal of the course was to help students develop computational identities as members

of the ML community. The final writeup for capstone projects was in the form of a

blog post, which is commonly used to share knowledge within the ML community in-

formally and quickly. This style of contribution helped students learn the disciplinary

norms, situate their work in the larger field, and identify with other ML developers,

enthusiasts, and researchers. 13 of the 14 projects from the course shared their project

blog posts publicly on the web [70]. Responses from the end-of-course survey showed

that students entered the course with limited practical ability as ML developers and

left the course feeling that they had the skills to create ML projects. Students also

envisioned themselves using the tools, techniques, and methods presented in the class

in a variety of future pursuits.

Student responses to "How did your views on machine learning change through

taking this course?" generally clustered into 4 categories (see Figure 4-17). 9 students

(52.9%) mentioned a personal realization of the easy application potential of
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Figure 4-17: Types of student responses to the question “How did your views on
machine learning change through taking this course?” with standard error bars.

ML: “I realized that you can do ML projects even without extensive theoretical or

mathematical background. . . I feel a lot more comfortable in taking on a ML project”.

3 students (17.6%) wrote about realizing limitations of ML despite what it can

do: “It’s not as easy as plugging in data into an algorithm. one has to understand

both their data and the algorithm. I think this is something that’s wonderful to learn

on my own than it is to learn in the traditional class setting.” 2 students (11.8%)

wrote that the course increased their interest and enjoyment of the field and

2 (11.8%) wrote about a realization that the field is rapidly evolving. 1 student

(5.9%) wrote that their views did not really change.

4.7 Discussion

The Deep Learning Practicum was designed as an introductory ML course that invited

college students from a diverse range of backgrounds and preparation to participate

in the creation and application of ML. The course aimed to help students from none

to novice-levels of CS and ML knowledge develop computational identities as mem-
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bers of the ML community and gain self-efficacy in ML. In general, students highly

enjoyed the course, felt that it helped demystify ML, and were encouraged to pursue

independent ML projects in the future. Analysis of student feedback and artifacts

indicate that successful completion of the capstone projects most heavily influenced

student development of self-efficacy and computational identity in relation to ML,

and that the modules portion of the course prepared students well for the project

assignment as well as future independent projects in ML.

Deep Learning Practicum was taught in TensorFlow.js due to the ease of creating

fast-paced, interactive in-class labs, but the core concepts and skills can be taught

in any coding language. Students who completed the course expressed both interest

and confidence in being able to apply the concepts and skills learned to future ML

projects of similar depth and breadth, signifying high A3. Self-Efficacy in ML. The

course modules were sufficient to help students gain the skills and knowledge needed

to research and apply state-of-the-art ML technologies not covered in class: 4 students

(24%) learned new architectures specifically for their project. We hypothesize that the

hands-on, exploratory lab work made students feel more comfortable interacting with

new architectures and playing with new models. Most importantly, after the course,

students felt they could create independent ML applications and were motivated to

continue their learning.

We felt that both iterations of the course were successful in our goals, with the sec-

ond iteration allowing students to learn more from their capstone projects. We believe

that the following four components of the course best contributed to its success:

First, while the modules did not teach all of the skills and concepts students needed

for every type of ML project, we hypothesize that the demo-focused, exploratory lab

work for each topic helped make students feel more comfortable playing with new

architectures. This encouraged students to conduct research and learn on their own

(S6. Independent Out-of-Class Learning). Every team engaged in S6. to find datasets,

models, or techniques for their projects, and 3 teams from the second iteration (21%)

applied new ML methods not taught in the class for their final projects.

Second, TensorFlow.js allowed beginners to dive directly into exploring complex
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and visually appealing ML applications. Being able to modify ML models in the

browser allowed for near-instantaneous feedback and reduced infrastructure prob-

lems. These fast-paced experiential learning activities helped students quickly gain

experience with S3. Creating ML Artifacts.

Third, having designated mentors for each project greatly helped students fast-

track their project creation process and helped them start connecting to the larger

ML community (A2. Identity and Community). Industry mentors were enthusiastic

about working with students and helped them properly scope their projects, find

resources, and avoid common mistakes or pitfalls often made by beginners.

Fourth, the informal blog post style of contribution for the final project helped

students learn the disciplinary sharing norms, situate their work in the community,

and identify with other ML developers, enthusiasts, and researchers. 13 of the 14

projects from the course shared their project blog posts publicly on the web [70].

While these results are promising, we recognize several limitations of this research.

The class sizes were small and Massachusetts Institute of Technology students are not

representative of the general population. There is also a high staff-to-student ratio

due to the laboratory/discussion format of the course as well as the direct mentorship

offered for the final projects. This course design can be difficult to replicate due to its

high resource commitment. Additionally, tools and technology in machine learning

change very quickly, so the applications-focused modules may need to be replaced in

the future. While we don’t foresee the first few topics becoming irrelevant (weeks 1-3),

new developments in research may allow more advanced topics to be replaced. The

advanced modules can also be selected based on what type of projects the instructors

want to encourage. Finally, we wish to note that we found no significant difference in

performance between students of varying levels of ML and coding backgrounds. Many

of the students without coding experience also suggested that a version of the course

could be adapted for high school students due to the hands-on and un-mathematical

nature of the experiential activities.

As a nascent field with a variety of applications, ML should not be considered a

tool accessible to only highly trained technical professionals. Policymakers worldwide
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have recently started considering the implications of ML technology. To ensure rea-

sonable regulation and fairness in the application of ML technology, everyone needs

to be engaged in such decisions instead of solely relying on technical experts and legal

structures. Thus, we must provide the right educational frameworks to help democ-

ratize participation in these pioneering conversations. Computational thinking in the

age of machine learning needs to encompass the thinking skills inherent in designing,

constructing, training, and testing ML applications.
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5

An Analysis of Curricula Using the

ML Education Framework

In this chapter, I present a rubric for analyzing ML curricula created from the princi-

ples of the ML education framework. The curriculum rubric is intended for use both

by curriculum designers who are mapping out the goals of a course they are creating

and educators who are choosing what to teach. I apply the curriculum rubric in an-

alyzing the 6 AI and ML courses mentioned in Chapter 1, including Deep Learning

Practicum, the course I presented in Chapter 4. I review and compare the results for

the 6 courses and offer insights into designing and implementing ML curricula.

5.1 ML Education Framework: Curriculum Rubric

The Curriculum Rubric provides descriptions for each item of the framework on a 0-4

scale, where 0 indicates no coverage of the framework element and 4 indicates high

coverage. In addition to the items from the framework, there is one final evaluation

item that addresses instructional design, which encourages educators and curriculum

developers to think about implementing courses with attention to good pedagogical

practices. This rubric has three uses:

∙ For curriculum designers to highlight which items they want to focus on (used

at the beginning of the design process)
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∙ For educators to evaluate how well their curriculum covers elements of the ML

education framework (used during the evaluation and redesign process)

∙ For educators to choose which curricula and workshops they want to use/teach

The guidelines from 4, high coverage, to 1, minimal coverage, of each item of the

rubric is presented below. A 0, indicating no coverage, is awarded if the curriculum

does not meet the standards for 1. A live version of the Curriculum Rubric for the

ML Education Framework can also be found in table form online [69], with the most

recent version shown in Appendix A.

∙ K1. General ML Knowledge

– 4: Graduates of this course can give a precise definition of machine learning

(e.g. "a model that can complete a specific task after being trained by hu-

mans to find patterns from large amounts of data") and provide a detailed

description of the steps of the machine learning pipeline with technical and

socio-ethical considerations for each step.

– 3: Graduates of this course can give an adequate definition of machine

learning and provide a cursory overview of the machine learning pipeline.

– 2: Graduates of this course can give a superficial definition of machine

learning (e.g. "teaching machines to do things that people can do") and

provide a few accurate examples of machine learning applications (e.g.

Google search, YouTube recommendations).

– 1: Graduates of this course recognize the term "machine learning" but

demonstrate limited abilities in defining the term or providing examples of

the technology (e.g. "machine learning has something to do with comput-

ers and technology").

∙ K2. Knowledge of ML Methods

– 4: Graduates of this course are able to accurately discern when to use a

range of machine learning methods across the breadth of the field. They
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are able to describe core technical concepts of these methods and comfort-

ably use/implement them in appropriate applications. (For high school and

above, a good range may include supervised methods such as K-nearest

neighbors, CART/DT, regression, convolutional neural networks; unsuper-

vised methods such as k-means clustering, principal component analysis,

GANs, embeddings; RNNs/LSTMs; reinforcement learning; transfer learn-

ing; ensemble methods. For middle school and below, the methods would

likely be framed around high level applications that allow students to com-

plete specific tasks using machine learning, including using GAN, RNN,

or CNN applications to create art or music, using RL or hidden Markov

models to play games...etc.)

– 3: Graduates of this course are able to accurately discern when to use

several machine learning methods. They are able to describe core tech-

nical concepts of these methods and use/implement them in appropriate

applications.

– 2: Graduates of this course are able to describe the use cases for and core

technical concepts of one or two machine learning methods. They are also

able to use/implement the method(s) in appropriate applications.

– 1: Graduates of this course are able to describe the use cases for and

general workings of a few machine learning methods at a surface level.

∙ K3. Bias in ML Systems

– 4: Graduates of this course are able to describe how machine learning sys-

tems may come to be unpredictably biased against specific groups through-

out each step of the machine learning pipeline and critically incorporate

the practices of ethical thinking and design in their own work.

– 3: Graduates of this course are able to describe how machine learning sys-

tems may come to be unpredictably biased against specific groups through-

out each step of the machine learning pipeline.
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– 2: Graduates of this course are able to detail one or two examples of bias in

machine learning systems, describing the causes of bias and resulting harms

(e.g. some examples of bias: Northpointe’s COMPAS system used in crim-

inal justice, hiring/resume screening models, fruit sorting models perform-

ing poorly on green apples vs red ones; some causes: incorrect assump-

tions, unbalanced training data, proxies, bad benchmarks/metrics, choice

of loss function; some harms: hiring discrimination, disparate healthcare

outcomes).

– 1: Graduates of this course are able to articulate that math-based models

are not neutral and that it is possible for machine learning systems to

create as biased outcomes as human decision-makers or even amplify bias.

∙ K4. Societal Implications of ML

– 4: Graduates of this course recognize that it is necessary for creators of

ML technologies to consider societal implications of their work and are

able to apply ethical and cultural perspectives/concepts to analyses of

machine learning artifacts in comprehensive, interrelational, and sensitive

ways (i.e. considering privacy, security, potential for abuse, balance of

benefits and harms, ethnographic reception, disparate impacts; using tools

such as stakeholder analysis, ethical matrix, model cards...etc.).

– 3: Graduates of this course recognize that it is important for creators of

ML technologies to consider societal implications of their work and are able

to apply ethical and cultural perspectives/concepts to analyses of machine

learning artifacts in not-fully-comprehensive ways.

– 2: Graduates of this course recognize that it is important for creators of ML

technologies to consider societal implications of their work and are able to

describe basic/obvious ethical or cultural impacts of ML technology (e.g.

ML automating away jobs).

– 1: Graduates of this course do not recognize that it is important for ML

engineers/creators to consider ethical, cultural, or societal consequences of

114



their work, but are able to articulate that machine learning technologies

exist within society and have societal implications.

∙ S1. ML Problem Scoping

– 4: Graduates of this course are able to determine which problems can be

solved using machine learning from a technical perspective (i.e. whether

it is possible to obtain a lot of training data and if the problem is such

that past data predicts future outcomes) and which problems should/n’t

be solved using machine learning from a logical, ethical, or cultural per-

spective (e.g. unsuitable problems: predicting the trajectory of a rocket

when it is more easily and accurately done using physics/non-stochastic

methods; problems with high standards for explainability or interpretabil-

ity).

– 3: Graduates of this course are able to determine which problems should/n’t

be solved using machine learning from a logical, ethical, or cultural per-

spective but are unable to determine which problems can be solved using

machine learning from a technical perspective.

– 2: Graduates of this course are able to determine which problems can be

solved using machine learning from a technical perspective but are unable

to determine which problems should/n’t be solved using machine learning

from a logical, ethical, or cultural perspective.

– 1: Graduates of this course are able to recognize problems similar to ex-

emplar ML problems they have seen in the past.

∙ S2. ML Project Planning

– 4: For a range of ML problems, graduates of this course are able to plan

out a solution sensitive to both technical implementation considerations

(i.e. what kind of data is needed, how to obtain these datasets, what kind

of methods/models to use, what computational resources are available for

training, what metrics to use for analysis, how the solution fits into the
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delivery setting such as mobile vs. cloud, how to maintain a feedback loop

into the system after deployment...etc.) and contextual factors including

ethics and cultural dimensions (e.g. data privacy, security, how the solu-

tion fits into existing human, technical, and systemic processes, potential

concerns of users or ’used upon’).

– 3: For a range of ML problems, graduates of this course are able to plan

out a solution with an adequate technical approach but minimal contextual

considerations.

– 2: For one or two types of ML problems, graduates of this course are able

to plan out a solution with adequate technical approach and contextual

considerations.

– 1: For one or two types of ML problems, graduates of this course are able

to plan out a solution with an adequate technical approach but minimal

contextual considerations.

∙ S3. Creating ML Artifacts

– 4: Graduates of this course are able to accurately identify appropriate

machine learning tool(s) that can be used for a wide range of machine

learning applications and comfortably use the tool(s) to implement the

given application (e.g. Beautiful Soup and Kaggle for data collection;

Teachable Machine 2, Cognimates, Keras, and PyTorch for model creation,

training, and analysis; AWS and GCP for computation).

– 3: Graduates of this course are able to identify appropriate machine learn-

ing tool(s) that can be used for several types of machine learning applica-

tions and use the tool(s) to implement the given application.

– 2: Graduates of this course are able to identify appropriate machine learn-

ing tool(s) for one or two types of machine learning applications and use

the tool(s) to implement the given application (e.g. using Teachable Ma-

chine to create new classification models or using the Embedding Projector
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to analyze different sets of data).

– 1: Graduates of this course are able to use machine learning tool(s) to

replicate one or two machine learning applications from the course (e.g.

using Fast Style Transfer webapp to create art).

∙ S4. Analysis of ML Design Intentions and Results

– 4: Graduates of this course are able to extract both implicit and explicit

design intentions of an ML system (i.e. based on affordances, use cases,

accuracy targets of classes/sub-classes, socio-political intentions, financial

incentives) and are able to critically analyze those initial intentions in

relation to how the deployed system can and should be used (i.e. pros and

cons of usage, when you should use something else, societal impacts...).

– 3: Graduates of this course are able to identify explicit design intentions

of an ML system as well as extract a few implicit design intentions, and

are able to analyze those initial intentions in relation to how the deployed

system can be used.

– 2: Graduates of this course are able to identify explicit design intentions

of an ML system and are able to relate those initial intentions to a few

elements of the deployed system.

– 1: Graduates of this course are able to identify explicit design intentions of

an ML system but are unable to relate these intentions to the behavior of

the deployed system (e.g. able to identify that the Amazon website wants

to sell items to make money, but unable to understand that a product

recommender algorithm helps with that intention).

∙ S5. ML Advocacy

– 4: Graduates of this course are able to critically engage with their commu-

nities regarding machine learning policies, products, and education. They

feel motivated to do so and actively seek out opportunities (e.g. teaching
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family and friends about machine learning, voicing opinions about policies

at a town hall).

– 3: Graduates of this course are able to critically engage with their commu-

nities regarding machine learning policies, products, and education. They

feel that it is valuable to do so but do not actively seek out opportunities.

– 2: Graduates of this course are able to critically engage with others re-

garding machine learning policies, products, or education but do not feel

it is important to do so.

– 1: Graduates of this course are able to engage with others at a surface level

regarding machine learning policies, products, or education (e.g. they don’t

consider social processes or don’t recognize ethical problems with ML).

∙ S6. Independent Out-of-Class Learning

– 4: During this course, students actively seek out highly engaging learning

experiences outside of the classroom (e.g. follow journals or blogs about

advances in machine learning or experiment with new products and meth-

ods), and are able to independently learn new machine learning concepts

and skills.

– 3: During this course, students actively seek out low-commitment learning

experiences outside of the classroom (e.g. keeping up with news about

the technology) and are able to independently learn new machine learning

concepts or skills.

– 2: During this course, students do not seek out learning experiences outside

of the classroom but are able to learn new machine learning concepts or

skills not taught in the course (e.g. if their in-class project requires them

to use a method not covered in the curriculum).

– 1: During this course, students do not seek out learning experiences out-

side of the classroom but are able to understand and draw connections to
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their prior knowledge when presented with information relating to machine

learning (e.g. if they see a news article about a machine learning product).

∙ A1. Interest

– 4: Graduates of this course are very interested in machine learning and

feel highly motivated to engage more with the subject.

– 3: Graduates of this course are interested in machine learning and feel that

they want to engage more with the subject.

– 2: Graduates of this course have some interest in machine learning and are

unsure if they want to engage more with the subject.

– 1: Graduates of this course have a cursory interest in machine learning

and do not plan to engage more with the subject.

∙ A2. Identity and Community

– 4: Graduates of this course participate in a larger machine learning com-

munity/(ies) where they feel like they belong, can receive help from, and

can give back to. They also feel like they have an active role in foster-

ing and shaping the development of the machine learning community/(ies)

that they are part of.

– 3: Graduates of this course participate in a larger machine learning com-

munity/(ies) where they feel like they belong, can receive help from, and

can give back to.

– 2: Graduates of this course are aware of at least one larger machine learning

tinkerer/learning community but do not participate (i.e. because they

cannot access the community, do not feel like they belong, or do not wish

to engage).

– 1: Graduates of this course participate in a small machine learning com-

munity of their peers during the course.

∙ A3. Self-Efficacy

119



– 4: Graduates of this course feel fully empowered (highly motivated and

prepared) to design and build new and meaningful machine learning arti-

facts.

– 3: Graduates of this course feel motivated to design and build new and

meaningful machine learning artifacts, but do not feel entirely confident

that they are able to succeed without dedicated resources.

– 2: Graduates of this course feel motivated to design and build new and

meaningful machine learning artifacts, but feel that they would not be able

to succeed without dedicated resources.

– 1: Graduates of this course do not feel motivated to design and build new

and meaningful machine learning artifacts, but feel that they could po-

tentially succeed if provided with dedicated resources (such as the ones

from the course, including mentorship, technical support, compute, soft-

ware...etc.).

∙ A4. Persistence

– 4: Graduates of this course voluntarily and successfully decide to pursue

or change career paths in order to work in a job relating to ML.

– 3: Graduates of this course voluntarily take more classes or do projects in

computing, data science, or ML in the future (e.g. middle school students

signing up for classes in high school, high school students deciding to major

or minor in college) and succeed in these endeavors.

– 2: Graduates of this course voluntarily engage with machine learning at a

surface level in the future (e.g. keep up with news about the technology,

experiment with new products).

– 1: Graduates of this course engage with machine learning in the future out

of necessity (i.e. for school or work) but would not if given the choice.

∙ Instructional Design
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– 4: The course was implemented with deliberate attention to good instruc-

tional design practices (i.e. well defined expected prior knowledge and

course objectives, builds upon a clear learning progression throughout the

course, properly links modules with few gaps, activities are engaging and

have strong ties to learning outcomes, evaluations are well-defined and

helpful to students, provides opportunities for feedback...etc.).

– 3: The course was implemented with adequate attention to good instruc-

tional design practices.

– 2: The course was implemented with some attention to good instructional

design practices (e.g. thought was given to content sequencing).

– 1: The course was implemented with minimal awareness of good instruc-

tional design practices (e.g. material is unsuitable for the audience, unclear

learning objectives, activities don’t lead to intended learning outcomes).

The curriculum rubric should be applied as appropriate to grade level/audience

level instead of as a fixed standard. For example, the following should be considered:

Who is the intended audience and what do they know? What is the age range

of the audience? Are they trying to apply ML to a specific field or do they want

to learn it more generally? Are they not tech-conscious at all, can they navigate

around websites and smartphone apps, or can they write computer programs? For

each age group/knowledge background, we face the challenge of needing to design

different educational interventions. Additionally, it is not expected for a single course

to provide advanced coverage for every item of the framework due to time and resource

constraints. Curriculum developers can use this rubric to select which items they wish

to cover and to what extent based on their goals, the background of their intended

audience, and their time and resource constraints.

In the analysis of the 6 AI/ML courses per the curriculum rubric that I discuss

in the following sections, I worked with the educators and curriculum developers to

identify how their audience corresponds to the 0-4 ratings on the curriculum rubric

“as appropriate to grade level”. In the future, it would be valuable to work with a
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wider pool of educators and clarify specific requirements for larger grade bands or

audience levels.

5.2 Analysis of 6 ML and AI Curricula Using the

Curriculum Rubric

I applied the ML Curriculum Rubric to a set of 6 publicly available AI and ML courses,

composed of 2 technical courses aimed at college level students or tech professionals,

2 courses aimed at general adult audiences, and 2 K-12 courses. The technical courses

I analyzed are Deep Learning Practicum, per Chapter 4, and Machine Learning by

Stanford, which is a popular course offered on Coursera by Andrew Ng [89]. Machine

Learning by Stanford is also fairly representative of most college-level technical ML

courses. The general adult education courses I analyzed are AI for Everyone [90],

which is also a popular course on Coursera run by deeplearning.ai, Andrew Ng’s

company, and Elements of AI [92], a Finnish course that has been supported by the

Finnish government to be released internationally. The two K-12 courses I analyzed

are the Technovation AI Families Challenge [31], which is an international 10-week

curriculum for primary school students and their families with an emphasis on ideating

useful ML projects for their communities, and AI + Ethics Curriculum for Middle

School [103], which came from research done by Blakeley Payne in the MIT Media

Lab.

I used publicly available lecture materials, video recordings, online texts, problem

sets, course reviews, and/or course forums to conduct evaluations of these 6 courses

according to the ML Curriculum Rubric. Afterwards, I reached out to the curriculum

designers and implementers for each of these courses to discuss my evaluations. I was

able to obtain feedback from 5 out of the 6 courses: Deep Learning Practicum, AI

for Everyone, Elements of AI, Technovation AI Families Challenge, and AI + Ethics

Curriculum for Middle School. The final scores these courses received were agreed

upon by both parties.
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One limitation of this analysis was that it was difficult across the board to obtain

A4. Persistence measurements due to the resources required to follow up with stu-

dents across several years. Additionally, many public ML and AI courses were made

available in the past 2-3 years (the K-12 and general adult audience categories in par-

ticular), so in many cases, not enough time has passed to take such measurements.

Much of the A4. Persistence scores in this analysis were based on short-term exit

surveys or anecdotal feedback that the instructors received.

In the rest of this section, I will be discussing the assignment of scores for each

course, as well as overall patterns found through this analysis.

5.2.1 Technical Course: MIT Deep Learning Practicum

As detailed in Chapter 4, Deep Learning Practicum was a full-semester college course

offered to MIT students of all grade levels and majors. The course was application and

project focused instead of theory-based, and significantly utilized transfer learning.

During the first portion of the course, 8 machine learning methods were taught in

weekly modules. During the latter portion of the course, students paired up to create

capstone projects of their own choosing with support from course staff and dedicated

industry mentors. The course met twice a week for 1.5 hours each session for a 15-

week semester, resulting in approximately 45 in-class hours. Table 5.1 presents the

evaluation for Deep Learning Practicum per the Curriculum Rubric. The evaluation

is split into “Intention” and “Result”. The instructors and curriculum designers scored

their initial intentions for the course separately from the actual post-course results

based on feedback from students and analysis of artifacts created by students for the

course.

Intention Result Comments

K1. General ML

Knowledge

4 4
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K2. Knowledge of

ML Methods

3 3 Aside from K-nearest neighbors, Deep

Learning Practicum covered deep learning

methods and not other machine learning

methods.

K3. Bias in ML

Systems

4 2 Instructors had hoped that several stand-

alone ethics, fairness, and bias lectures

during the course would help students

gain awareness of how to thoroughly con-

sider such issues during their own ML ap-

plication design process. However, they

found that while students were able to dis-

cuss example cases, this level of coverage

was not sufficient for students to integrate

it into their design processes.

K4. Societal Impli-

cations of ML

3 3

S1. ML Problem

Scoping

4 4
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S2. ML Project

Planning

4 3.5 From analysis of capstone projects and

post- survey responses, significant num-

bers of students either did not address

or lightly addressed contextual consider-

ations in their project planning process,

while several project teams focused heav-

ily on social, ethical, or cultural issues.

This was also highly dependent on the

subject of the capstone project (i.e. A

project that tries to build a sign language

interpreter may need to consider contex-

tual issues more than a project that tries

to train an ML player for a game).

S3. Creating ML

Artifacts

4 3 Students developed high levels of exper-

tise in creating ML artifacts relating to

the methods needed for their capstone

projects. However, they had only ade-

quate mastery over implementing other

types of applications taught in the class

through the week-long modules.

S4. Analysis of

ML Design Inten-

tions and Results

2 2

S5. ML Advocacy 3 2 While students often discussed ML during

the course with their peers and mentors,

they did not express having or wanting to

have any such discussions with their com-

munities outside of the class.
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S6. Indepen-

dent Out-of-Class

Learning

4 4 Most project groups researched and

learned how to implement methods or al-

gorithms not taught during the course.

A1. Interest 4 3 From the post- survey, every student could

see themselves engaging with ML more in

the future. However, several students ex-

pressed that their main motivations were

for potential career needs and not personal

interest in the subject.

A2. Identity and

Community

4 2 Instructors had hoped that connecting

students to industry mentors and as-

signing a public blog post for the final

project would help students participate

in the larger online ML creator/research

communities. However, while students

heavily participated in the community of

their classmates and instructors during

the course and were made aware of the

online ML community, most only browsed

materials that others had posted and did

not choose to engage themselves.

A3. Self-Efficacy 4 3 In the post- survey, students agreed that

they could complete a ML project of a

similar level and scale to their final project

on their own, but several expressed that

they did not feel that they could succeed

in implementing significantly different ML

applications without mentorship due to a

lack of programming ability.
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A4. Persistence 3 3 While we do not have long-term data, ev-

ery student who filled out the post- survey

indicated that they hope to engage in fu-

ture ML projects or courses.

Instructional De-

sign

4 4

Table 5.1: Curriculum Rubric evaluation of Deep Learning Practicum, separated by
initial “Intentions” and post-course “Results”.

5.2.2 Technical Course: Machine Learning by Stanford

Machine Learning by Stanford is offered on Coursera and aims to help students learn

machine learning techniques and “gain practice implementing them and getting them

to work” [89]. It covers “not only the theoretical underpinnings of learning, but

also. . . the practical know-how needed to quickly and powerfully apply these tech-

niques to new problems”. The topics covered draw from case studies and applications,

and include “(i) Supervised learning (parametric/non-parametric algorithms, support

vector machines, kernels, neural networks); (ii) Unsupervised learning (clustering, di-

mensionality reduction, recommender systems, deep learning); (iii) Best practices in

machine learning (bias/variance theory; innovation process in machine learning and

AI)”. The course is stated to take approximately 54 hours to complete. Table 5.2

presents the evaluation for Machine Learning by Stanford per the Curriculum Rubric.

The evaluation was based on the lectures, problems, and reviews from the offering of

the course on Coursera.

Evaluation Comments

K1. General ML

Knowledge

3 The course did not focus on ethical con-

siderations and bias/fairness when apply-

ing ML.
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K2. Knowledge of ML

Methods

4

K3. Bias in ML Sys-

tems

0 Bias is mentioned in the course in relation

to the bias vs. variance context, and not in

an ethics or fairness context.

K4. Societal Implica-

tions of ML

1 The course discusses many use cases of

ML in real-world applications, but does not

discuss ethical, cultural, or societal conse-

quences of ML or specific issues that devel-

opers should consider.

S1. ML Problem

Scoping

2 The course discusses technical impediments

to applying ML to a problem as well as

many ML methods and use cases, but does

not discuss the “should” aspect of this ele-

ment.

S2. ML Project Plan-

ning

3 The course dives deeply into the techni-

cal approaches towards building an ML

project, but does not discuss contextual

considerations.

S3. Creating ML Ar-

tifacts

3 While students create many ML artifacts

through text-based coding languages in the

course, many top reviews on Coursera say

that they would not feel comfortable using

the tools in the course to implement prac-

tical applications. Since this course is a

MOOC, these reviews may not be accurate

and may not reflect an in-person version of

the course.
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S4. Analysis of ML

Design Intentions and

Results

2 The course does not focus on analyz-

ing product intentions but delves deeply

into technical analysis and troubleshooting,

which should be applicable to this item.

S5. ML Advocacy 1

S6. Independent Out-

of-Class Learning

2 This evaluation is based on how the course

encourages students to investigate other

methods and learn more about ML outside

of the materials provided, but the score is

difficult to determine without instructor in-

put or student data and may be inaccurate.

A1. Interest 3 Again, this item is difficult to determine

without instructor input or student data

and may be inaccurate. Reviews on Cours-

era were varied. Many reviewers also men-

tioned that they decided to take the course

for perceived career or school needs, which

is difficult to disentangle from interest in

the subject.

A2. Identity and

Community

1 A discussion forum for students of the

course was available on Coursera, but the

course does not focus on engaging students

in a wider ML community of creators.
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A3. Self-Efficacy 2 Again, this item is difficult to determine

without instructor input or student data

and may be inaccurate. Reviews on Cours-

era mentioned that most students took the

course for a perceived career or academic

need which points to some level of motiva-

tion. However, there were mixed reviews

on understanding ML concepts vs. being

able to do or make something with ML.

A4. Persistence Could not

evaluate

It was not possible to evaluate persistence

based on publicly available information.

Instructional Design 3.5 The course was well designed for its origi-

nal intended audience of Stanford students,

however, many reviewers said that the tech-

nical prerequisites of the Coursera offering

were unclear, which seems to have made it

difficult for some less technical students.

Table 5.2: Curriculum Rubric evaluation of Machine Learning by Stanford.

5.2.3 General Adult Course: AI for Everyone

AI for Everyone is offered on Coursera by deeplearning.ai under “Business Strategy”

and is aimed at non-technical audiences who want to learn the business aspects of

AI [90]. The course is composed of lectures on 4 topics: “What is AI?”, “Building

AI Projects”, “Building AI in Your Company”, and “AI and Society”. It covers “The

meaning behind common AI terminology, including neural networks, machine learn-

ing, deep learning, and data science; What AI realistically can and cannot do; How

to spot opportunities to apply AI to problems in your own organization; What it feels

like to build machine learning and data science projects; How to work with an AI
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team and build an AI strategy in your company; and How to navigate ethical and

societal discussions surrounding AI”. The course is stated to take approximately 6

hours to complete via online lectures. Table 5.3 presents the evaluation for AI for

Everyone per the Curriculum Rubric. The evaluation is split into “Intention” and

“Result”. The curriculum designers scored their initial intentions for the course sep-

arately from the post-course results based on feedback but felt that the “Intentions”

and “Results” matched fairly well.

Intention Result Comments

K1. General ML

Knowledge

3 3 The course thoroughly described machine

learning but did not try to dig deeply into

the ML pipeline since it was not targeted

towards developers.

K2. Knowledge of

ML Methods

1 1 The course presented several example use

cases and applications of ML commonly

used in industry at a surface level.

K3. Bias in ML

Systems

2 2 The course gave a few examples of bias

and described the effect of biased or non-

inclusive datasets.

K4. Societal Impli-

cations of ML

2 2 The course lightly covers the poten-

tial impact of ML on international

economies, governance, and job cre-

ation/displacement as well as some ways

to resolve potential issues with transition.

S1. ML Problem

Scoping

2 2 The curriculum covers the data and pre-

diction aspects of what problems "can" be

solved using ML and lightly discusses the

"should" aspect in the last unit.
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S2. ML Project

Planning

0 0 The course is targeted towards business

strategists and did not intend to cover the

more technical aspects of ML.

S3. Creating ML

Artifacts

0 0

S4. Analysis of

ML Design Inten-

tions and Results

2 2 The course presents some analysis of ML

products and solutions from a business de-

ployment aspect.

S5. ML Advocacy 1 1 The course touched the topic but the cur-

riculum developers tried to avoid issues of

politics to increase the adaptability of the

curriculum for wider audiences.

S6. Indepen-

dent Out-of-Class

Learning

3 3 The curriculum developers saw that stu-

dents actively sought out more informa-

tion about ML methods and products dur-

ing the course.

A1. Interest 4 4

A2. Identity and

Community

1 1 Students could participate in a forum of

their classmates during the Coursera of-

fering of the course.

A3. Self-Efficacy 2 2 The course is targeted towards

non-technical professionals working

with/around AI and has a focus on how

to build useful tools for business, but

doesn’t try to build technical confidence

through hands-on experiences.
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A4. Persistence 4 No

data

The curriculum developers hoped that

this course would help students implement

AI projects in their workplace or encour-

age them to take further courses in AI but

did not have available data on persistence.

Instructional De-

sign

4 4

Table 5.3: Curriculum Rubric evaluation of AI for Everyone, separated by initial
“Intentions” of the course creators and observed “Results”.

5.2.4 General Adult Course: Elements of AI

Elements of AI is a free online massive open online course (MOOC) created by the

University of Helsinki and Reaktor aimed at “as broad a group of people as possible”

who have questions such as “How AI might affect your job or your life?” and who want

to “understand how AI will develop and affect us in the coming years” [92]. It has no

programming prerequisites, but some basic math knowledge (i.e. fractions, decimals,

and arithmetic) is expected. The course “[combines] theory with practical exercises”

and is organized into 6 parts: “What is AI?”, “AI problem solving”, “Real world AI”,

“Machine learning”, “Neural networks”, and “Implications”. These units are taught

through online texts, paper-and-pencil exercises, online interfaces of toy models, and

comprehension questions. Each of the 6 parts is expected to take 5-10 hours for an

estimate of 45 hours to complete the course. Table 5.4 presents the evaluation for

Elements of AI per the Curriculum Rubric. The evaluation is split into “Intention”

and “Result”. The curriculum designer scored their initial intentions for the course

separately from observed results from students and external feedback.

Intention Result Comments
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K1. General ML

Knowledge

3 3 The examples presented and discussions

of problem framing and societal impact

give a good overview of ML and the ML

pipeline, and the course did not intend to

dive too deeply into technical implemen-

tation.

K2. Knowledge of

ML Methods

1 1 The course provided a few examples of ML

methods through specific use cases, but

the course designers did not intend to de-

tail specific methods outside of the given

use cases or teach students how to imple-

ment ML applications.

K3. Bias in ML

Systems

2 2 The course gave a few examples of bias in

ML and mainly discussed data as a cause

of bias.

K4. Societal Impli-

cations of ML

3 3 The course provided extensive coverage of

societal, cultural, and ethical issues re-

lating to ML (i.e. data permissions, pri-

vacy, job displacement). It did not present

specific tools or frameworks that students

could use in their own practice.

S1. ML Problem

Scoping

4 4

S2. ML Project

Planning

0 0 The course did not intend to cover how to

implement ML applications from a tech-

nical perspective.

S3. Creating ML

Artifacts

0 0
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S4. Analysis of

ML Design Inten-

tions and Results

3 3 The course provided several example anal-

yses of existing types of ML products from

a privacy, bias, and “hype” lens.

S5. ML Advocacy 4 4 The course builds a strong call to ac-

tion throughout the curriculum to en-

courage students to engage members of

their community in learning about ML.

The course developers saw that many for-

mer students became course ambassadors

and recommended the course to their peer

groups. Comments on the Spectrum fo-

rum also indicate community outreach.

The course developers are planning a user

study/impact study to validate these re-

sults.

S6. Indepen-

dent Out-of-Class

Learning

3 3 The course includes an activity where stu-

dents find and write about a related news

article. Real-world applications of ML

from the units also encouraged students

to explore materials outside of the course,

which was reflected in student engagement

in the Spectrum forum.

A1. Interest 4 4 Student feedback indicated high interest

in ML topics from taking the course.

A2. Identity and

Community

1 1 The course provided a Spectrum forum

for its students but did not connect stu-

dents to other, larger online ML learn-

ing/creator communities.
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A3. Self-Efficacy 2 2 The course did not intend to teach stu-

dents how to build ML applications, al-

though there was student interest and mo-

tivation for doing so. The course design-

ers are creating a follow-up course called

"Building AI" to teach this topic.

A4. Persistence 3 2.5 There was high variance in persistence due

to the nature of the MOOC, but course

designers saw that most students either

lightly followed ML news or took more

courses in ML after the course.

Instructional De-

sign

4 4

Table 5.4: Curriculum Rubric evaluation of Elements of AI, separated by initial
“Intentions” of the course creators and observed “Results”.

5.2.5 K-12 Course: Technovation AI Families Challenge

The Technovation AI Families Challenge is an educational program aimed at children

16 and under along with their families [31]. I evaluated the 2019-2020 season, which

has a discussion-based approach to AI along with hands-on activities where students

build AI agents using blocks-based or drag-and-drop tools. Students are challenged

to ideate AI solutions to problems in their own communities and are provided a net-

work of mentors that they can access through an online forum. The curriculum has

10 lessons: “1. Become an AI Agent Expert, 2. Create a Pattern-Finder AI Agent,

3. Strengthen an AI Agent with Data, 4. Compete to Train Your ML Agent, 5.

Brainstorm Your AI Invention, 6. Plan Your AI Invention, 7. Become an Expert for

Your Plan, 8. Build Your AI Invention, 9. Pitch Your AI Invention, and 10. Prepare

to Submit [the invention to the Technovation competition]”. The first portion of the

curriculum focuses on technical topics such as how AI works, where it is currently
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used, and how it is created, whereas the latter portion of the curriculum has stu-

dents go through a rigorous ideation process for a personal AI invention. Families

with children between 8-15 are encouraged to submit their invention to a yearly pitch

competition. The entire curriculum takes approximately 20 hours to complete. Ta-

ble 5.5 presents the evaluation for the Technovation AI Families Challenge per the

Curriculum Rubric. The evaluation is split into “Intention” and “Result”. The instruc-

tors and curriculum designers scored their initial intentions for the course separately

from the actual post-course results based on feedback from students and analysis of

artifacts created by students for the course.

Intention Result Comments

K1. General ML

Knowledge

3 2 The Technovation curriculum has a

broader AI focus, with Lesson 4 on ML.

The 2-hour ML unit involved mostly play-

ing with and modifying pre-existing code

and datasets, which the curriculum devel-

opers felt did not result in more than su-

perficial knowledge of ML.

K2. Knowledge of

ML Methods

2 1 The curriculum developers felt that most

students did not engage enough with tech-

nical concepts of ML methods to thor-

oughly understand them, but could ex-

plain ML on an input/output level.
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K3. Bias in ML

Systems

1 0.5 There was a discussion activity in Lesson 6

about the consequences of ML inventions,

which lightly touched on bias, but based

on the results, the curriculum developers

felt that the connection to bias could be

clarified (they will modify the curriculum

for the following season to include a con-

crete ethics component).

K4. Societal Impli-

cations of ML

3 3

S1. ML Problem

Scoping

4 3 Emphasis on community discussion dur-

ing the project ideation phase of the cur-

riculum was strong on the “should ML

be used” component of scoping. Students

were weaker on the “can ML be used” com-

ponent due to shorter interactions with

technical ML concepts.

S2. ML Project

Planning

2 2 The curriculum developers saw that

students become very focused on the

end product/prototype due to the

competition-based nature of the curricu-

lum. These students may not fully reflect

on their learning or design processes until

after the program.

S3. Creating ML

Artifacts

2 2 Students used a few public ML tools

(i.e. Cognimates and MachineLearning-

forKids) to create ML classification appli-

cations.
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S4. Analysis of

ML Design Inten-

tions and Results

2 2

S5. ML Advocacy 4 4 The curriculum had a strong built-in com-

munity outreach component that involved

explaining ML to and discussing students’

ML invention ideas with friends, fam-

ily members, and other community mem-

bers. In addition to advocacy within these

mostly non-expert community groups,

students also pitched their inventions to

expert mentors through an online forum

and discussed their ideas with peers and

mentors alike.

S6. Indepen-

dent Out-of-Class

Learning

3 3 The course developers saw that students

and their families became more “tuned in”

to news about ML and AI technologies

during the course.

A1. Interest 4 4 Based on a post- course survey.

A2. Identity and

Community

4 4 Students and their families were very in-

volved in the Technovation online forum

during the course and continued to give

back and engage in that community af-

ter completing the program. Additionally,

many parents were inspired by the course

and created their own ML learning and

discussion groups within their local com-

munities.
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A3. Self-Efficacy 4 3 The curriculum developers felt that most

students did not gain enough technical

skills from the program to successfully cre-

ate technical ML artifacts without men-

torship.

A4. Persistence 3 3 No long-term data is available, but re-

sponses from the post- course survey in-

dicated that most students planned to en-

gage more with ML in the future.

Instructional De-

sign

4 4

Table 5.5: Curriculum Rubric evaluation of Technovation AI Families Challenge
(2019-2020 season), separated by initial “Intentions” of the course creators and ob-
served “Results”.

5.2.6 K-12 Course: MIT AI + Ethics Curriculum for Middle

School

“An Ethics of Artificial Intelligence Curriculum for Middle School Students”, also

known as AI + Ethics Curriculum for Middle School, is a mainly paper-and-pencil/unplugged

curriculum with five learning objectives: 1. “Understand the basic mechanics of artifi-

cial intelligence systems”; 2. “Understand that all technical systems are socio-technical

systems. . . [which] are not neutral sources of information”; 3. “Recognize there are

many stakeholders in a given socio-technical system and that the system can affect

these stakeholders differentially”; 4. “Apply both technical understanding of AI and

knowledge of stakeholders in order to determine a just goal for a socio-technical sys-

tem”; and 5. “Consider the impact of technology on the world” [103]. In this course,

students design paper prototypes of real-world ML and AI products such as YouTube,

discuss the potential effects of ML and AI technologies on different populations, and

create ethical matrices. The entire curriculum takes approximately 13 hours to com-
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plete. Table 5.6 presents the evaluation for AI + Ethics Curriculum for Middle School

per the Curriculum Rubric. The evaluation is split into “Intention” and “Result”. The

curriculum designer scored her initial intentions for the course separately from the

actual post-course results based on feedback from students and analysis of artifacts

created by students for the course.

Intention Result Comments

K1. General ML

Knowledge

2 2

K2. Knowledge of

ML Methods

1 1 The goal of the course was not to try to

teach specific ML methods, but to expose

students to a few common methods in or-

der to develop some understanding of ML

for analytical activities.

K3. Bias in ML

Systems

2 2 Students learned about case studies of

bias in ML, focusing on dataset bias, but

did not cover the ML pipeline.

K4. Societal Impli-

cations of ML

4 4 The course focused on the societal impli-

cations of ML technologies for different

stakeholders. It provided specific exam-

ples in class and gave students political,

ethical, and cultural tools/frameworks to

use for analysis.

S1. ML Problem

Scoping

3 3 The course focused on contextual consid-

erations of technological products but did

not dive deeply into technical implemen-

tation details.

S2. ML Project

Planning

0 0
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S3. Creating ML

Artifacts

2 2 The Teachable Machine and GANart ac-

tivities apply the "I Do - We Do - You Do"

Gradual Release of Responsibility Model

[33], allowing students to feel an increas-

ing sense of ownership over ML artifacts

of their own creation.

S4. Analysis of

ML Design Inten-

tions and Results

4 4 During the course, students analyzed sev-

eral products and applications of ML

through multiple iterations of in-class dis-

cussions, creating ethical matrices for vari-

ous stakeholders, and paper-and-pencil re-

designs.

S5. ML Advocacy 4 3 The course included strong advocacy com-

ponents during discussion, socio-technical

analysis, and redesign activities, but did

not build in community outreach outside

of the classroom (i.e. writing letters to

representatives) due to schools having lia-

bility concerns over political content.

S6. Indepen-

dent Out-of-Class

Learning

3 3 Throughout the course, students con-

tributed daily to a classroom mural where

they wrote down two hopes for AI, con-

cerns about AI, questions about AI, or

feelings/drawings of AI. These contribu-

tions indicated that students furthered

their learning at home by talking to their

parents, researching politicians’ knowl-

edge of AI, and looking into applications

of ML that were not covered in the course.
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A1. Interest 3 3 Feedback after the course indicated that

students became more interested in the

technical aspects of ML through first en-

gaging with the societal impact of the

technology.

A2. Identity and

Community

1 2 Students engaged heavily with the com-

munity of their peers during the course.

The instructors also included several ad-

ditional activities not in the curriculum

that increased students’ sense of connec-

tion with a wider ML community: inviting

engineers from nearby ML companies to

come to talk about their work, having stu-

dents participate in an open house where

they presented their projects to MIT stu-

dents and staff. These additional activi-

ties may be difficult to replicate in other

settings but may be possible to replace to

a certain extent with videos.
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A3. Self-Efficacy 4 3 This course targets self-efficacy in being

able to critically analyze technology in

general instead of targeting self-efficacy in

creating ML applications. At the begin-

ning of the course, the instructors saw that

students felt powerless about being able

to influence the designs of dominant tech

products. However, after the YouTube

Redesign activity and seeing the many re-

designs of Twitter, students gained more

confidence.

A4. Persistence 3 3 From short to medium term feedback,

many students worked on more ML

projects at home with their parents,

taught Teachable Machine to a friend or

sibling, and decided to sign up for ML

classes.

Instructional De-

sign

4 4

Table 5.6: Curriculum Rubric evaluation of AI + Ethics Curriculum for Middle
School, separated by initial “Intentions” of the course creators and observed “Results”.

5.3 Discussion

In this subsection, I will discuss some trends from my evaluation and conversations

with other curriculum developers. I will be plotting the evaluation results for each

category of ML/AI courses (technical, K-12, and general adult audience) on radar

charts. For courses where both “Intention” and “Result” were collected, the “Result”

scores are plotted. Only two courses were evaluated per each of the three categories,
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so these results are not statistically significant. However, the courses selected for

evaluation are exemplary for their category and can provide insights toward overall

trends in ML education.

5.3.1 K-12 vs. Technical ML Courses

The radar charts for the evaluation results of the K-12 and technical ML courses

are presented in Figure 5-1. The chart is on a 0-4 scale per the ML Education

Framework Curriculum Rubric with the four “Knowledge” items marked as K1-K4,

the six “Skills” marked as S1-S6, and the four “Attitude” items marked as A1-A4.

The three knowledge items and three skills that are minimally necessary for courses

for ML-engaged citizens (see Section 3.1.4) are marked with an asterisk *.

Figure 5-1: Evaluation results for two ML and AI K-12 courses per the ML Education
Framework Curriculum Rubric (left) and evaluation results for two ML technical
courses (right). The asterisk * elements are the minimally required items from the
ML Education Framework for ML-engaged citizens.

The two radar charts for K-12 and technical courses are nearly reversed/opposite

in a complementary way. In terms of Knowledge and Skills, the focus of K-12 courses

seemed to be on K4. Societal Implications of ML, S4. Analysis of ML Design In-

tentions and Results, and S5. ML Advocacy. The technical courses had significantly
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lower coverage of these 3 Knowledge and Skill items and instead delve deeply into

items associated with being able to create technical ML artifacts: K1. General ML

Knowledge, K2, Knowledge of ML Methods, S1. ML Problem Scoping, S2. ML

Project Planning, S3. Creating ML Artifacts, and S6. Independent Out-of-Class

Learning. K-12 courses also focused more on all four attitudinal items overall com-

pared to technical courses. In particular, K-12 curricula seem to have more built-in

learning experiences for developing A1. Interest and A2. Identity and Community.

These results reflect the different motivations of K-12 vs. technical ML courses.

Most K-12 educators aim to engage a wide range of students in ML/AI so that

they are not intimidated by it, so that they are motivated to learn more about it

in the future, and so that they have the basic knowledge and skills necessary to

effectively use and interact with everyday ML products in their lives. The main goal

of technical ML educators is to help students who already have some background in

programming or advanced mathematics gain the ability to work on ML engineering

projects or research in ML. Perhaps due to the nature of students who seek out these

technical ML courses, there is already an established interest towards ML (e.g. career

motivations) so instructors do not feel the need to spend time on developing that item

of the framework. However, it may be useful for technical ML courses to develop A2.

Identity and Community more in their curriculum.

From educational theories and research, in order for students to continue inde-

pendent learning after an intervention or to create more ML artifacts, an ML learn-

ing/creator community that students can receive help from and give back to is very

valuable. The students of technical courses tend to be older than K-12 audiences, so

they have more ability to seek out these communities on their own. However, the ML

and AI field lacks diversity, which can make these communities less welcoming for stu-

dents from marginalized communities [39]. It is important for the entire ML/AI field

to have more ML creators from diverse backgrounds in order to identify and solve

a wider range of problems [117], and helping students experience positive interac-

tions with these larger ML learning/creator communities during the more controlled

environment of a technical ML course may help smoothen this transition.
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5.3.2 General Adult ML and AI Courses

The radar chart for the evaluation results of the two ML/AI courses for general adult

audiences is presented in Figure 5-2. The chart is on a 0-4 scale per the ML Education

Framework Curriculum Rubric with the four “Knowledge” items marked as K1-K4,

the six “Skills” marked as S1-S6, and the four “Attitude” items marked as A1-A4.

The three knowledge items and three skills that are minimally necessary for courses

for ML-engaged citizens (see Section 3.1.4) are marked with an asterisk *.

Figure 5-2: Evaluation results for two ML and AI courses for general adult audiences
per the ML Education Framework Curriculum Rubric. The asterisk * elements are
the minimally required items from the ML Education Framework for ML-engaged
citizens.

Compared to K-12 or technical ML courses (see Figure 5-1), the general adult

education courses I analyzed covered much less material overall. The focus of this

category of ML education seems to be on A1, fostering interest in ML, with some

direction for S1, how to scope an ML problem. These courses tried to serve as a

brief introduction to ML and pointed students to technical ML courses if they were

interested in further independent learning. There were minimal hands-on experiential

learning activities with ML tools where students could create ML artifacts. There
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also seemed to be minimal attempts to develop identity and community.

Based on my conversations with the curriculum creators, general adult AI and

ML education seems to have two types of audiences: 1. Adults who are curious or

concerned about the field and wish to learn more; and 2. Companies who wish to

provide their non-technical workforce some level of ML education to prepare for future

work relating to the field. The first audience sub-category is similar to K-12 audiences

and it may be possible to modify tools and curricula from that category. The second

audience sub-category may be more interested in curricula with narrower focus for

specific businesses. In either case, general adult audiences usually have fewer obvious

incentives compared to K-12 or technical audiences— they are likely to be learning

mostly out of interest instead of to succeed at a class in school or to gain skills that

are immediately applicable to their work— so these audiences usually wish to spend

less time on a full ML or AI course.

5.3.3 Future Development of the Curriculum Rubric

During the conversations with K-12 curriculum developers, we discussed several ideas

for future development of the Curriculum Rubric that would make it easier to use

for K-12 educators and course developers. Educators felt that it would be valuable

to work with K-12 teachers to clarify more detailed expectations for the 1-4 scores

of each item of the framework for each grade band. It may be possible to pivot this

rubric to work with standard educational guidelines such as the standards that the

AI4K12 Initiative is developing if we can identify resources and tools that pair well

with items of the framework at each grade band.

AI4K12 is a group in the United States that is working on a set of nationwide

educational standards for AI (see Section 2.1.3). Their work is based upon a set of 5

Big Ideas, one of which is Machine Learning. They list out what students from each

grade band should be able to do in relation to each of their 5 Big Ideas. For Big Idea

#3: Machine Learning, they have listed 2-3 items for each of their 4 grade bands

for K-12 [37]. While my framework can be thought of as a rubric with a 0-4 scale

for each item of the framework, the AI4K12 guidelines are organized as specific “do”

148



activities that serve as benchmarks for student learning. The motivations behind the

AI4K12 standards and my ML Education Framework are also different. AI4K12 aims

to establish essential items that every student should know and be able to do across

all of the classrooms in the US, where there are huge disparities in what resources

are available. My ML Education Framework is trying to address the more general

process of transforming ML consumers to ML-engaged citizens, and then onwards to

tinkerers and eventually researchers or engineers.

Despite these differences, many activities from the AI4K12 guidelines correlate

nicely onto items in my ML Education Framework. For AI4K12’s Big Idea #3: Ma-

chine Learning, their 9 “do” items [37] directly relate to 4 elements of my framework:

∙ Grades K-2:

– Learn from patterns in data with ‘unplugged activities’ (K1: General

ML Knowledge)

– Use a classifier that recognizes drawings. Use Google Autodraw or Cog-

nimates Train Doodle to investigate how training sets work to identify

images and discuss how the program knows what they are drawing (S3:

Creating ML Artifacts)

∙ Grades 3-5:

– Describe and compare the three different machine learning approaches:

supervised, unsupervised and reinforcement learning (K2: Knowledge

of ML Methods)

– Modify an interactive machine learning project by training its model (S3:

Creating ML Artifacts)

– Describe how algorithms and machine learning can exhibit biases (K3:

Bias in ML Systems)

∙ Grades 6-8:
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– Identify bias in a training data set and extend the training set to address

the bias (K3: Bias in ML Systems)

– Hand-simulate the training of a simple neural network (K2: Knowledge

of ML Methods)

∙ Grades 9-12:

– Train a neural network (1-3 layers) with TensorFlow Playground (S3:

Creating ML Artifacts)

– Trace and experiment with a simple ML algorithm (K2: Knowledge of

ML Methods)

While the AI4K12 is still developing their lists of standards for each Big Idea

and grade band, additional items from my framework are likely to be covered by the

other 4 Big Ideas from AI4K12, in particular, K4. Societal Implications of ML in

Big Idea #5: Societal Impact. It seems useful to work in collaboration with similar

organizations in the future, which will probably require working closely with educators

to detail specific expectations per grade band and working with tool developers to

create public ML tools that pair well with each grade band and application.
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6

Public ML Tools and PIC, the

Personal Image Classifier

As discussed in Chapter 5, in order to teach AI and ML curricula to more general and

less technical audiences, we must also create tools that allow for hands-on exploration

of ML that pair well with each grade band and application. There exist many ML

“demos” that allow students to play with ML applications in contained settings to

explore what ML can do and the limitations of ML (e.g. Sketch-RNN allows users

to draw with their mouse and is able to complete the drawing via an ML model [42];

MuseNet can generate musical riffs based on user-specified styles and instruments

[105]). These ML demos are very suitable for the “Use” portion of the ML learning

progression, but tools that provide students with opportunities to build ML models

and applications for themselves are necessary for students to move towards the “Mod-

ify” and “Create” stages of their learning. I refer to these tools as “public ML tools”

and they play a crucial role in the ML education community. Public ML tools are

essential to the learning experience for students to engage more deeply with ML in a

hands-on way or create ML artifacts. What public ML tools are available also affect

what curricula can be designed and taught.

The highest utility and highest difficulty tools for machine learning are text-based

ML libraries such as PyTorch [101] or TensorFlow [1]. These types of tools are

most often used by researchers or engineers, and are taught in technical ML courses.
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Many public ML tools for youth and general audiences have sprung up in the past

2-3 years. These include popular graphical interfaces such as Teachable Machine

or Model Builder, which we utilized in Deep Learning Practicum, that help people

explore machine learning concepts through training models. There are also webapps

that allow people to creatively play around with ML such as through style transfer

or GAN Paint [9]. Blocks-based programming tools have also been built to teach

machine learning within the context of programming concepts (i.e. ecraft2learn [63]

and Cognimates).

In this chapter, I present the Personal Image Classifier (PIC), a public ML tool for

high school and above students to train and test their own image classification mod-

els. Image classification was chosen as the focus of this public ML tool because of its

clear inputs and outputs.. The general public is also able to conceptualize potential

uses for image identification due to the ubiquity of exposure through real life applica-

tions. Similar to Teachable Machine and some other ML exploration tools, students

are able to personalize PIC by using images taken from their webcams or downloaded

onto their computers and defining the labels. PIC extends these applications, how-

ever, through a connection with MIT App Inventor [56], a blocks-based programming

language for creating mobile apps. App Inventor is widely used by millions of people

across the world to easily build a wide range of highly customizable mobile applica-

tions. Its audience includes children as young as middle school to adults across 195

countries. The PIC webtool is hosted at https://classifier.appinventor.mit.edu

The main artifacts built for the PIC project are a web interface that allows users

to train custom image classification models, and an MIT App Inventor extension that

allows users to upload their image classifiers for use in mobile applications. These

tools allow a user to easily create image classification models and use them in mobile

applications that they build themselves (see Figure 6-1 for the workflow). Most of

the material in this chapter has been previously published [121, 120].

In the PIC webapp, users specify items for the image classifier to learn and provide

examples using the webcam or uploaded from their laptop (see Figure 6-2). The web

interface allows users to train the classification model on these images and labels, test
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Figure 6-1: The PIC webtool allows users to train a personal image classifier, which
they can port into the MIT App Inventor extension for mobile application creation.

and analyze the model’s performance, and download the trained model.

In the MIT App Inventor extension, users can upload the downloaded model from

the webapp through one of the extension’s properties (see Figure 6-3), and then

construct the desired mobile application using the extension’s provided blocks.

In the rest of this chapter, I will detail:

1. The technical implementation of the PIC webtool and features built into PIC

that allow users to analyze the behavior of their models.

2. An extension for MIT App Inventor that enables users to incorporate image

classification models trained on the PIC webtool into mobile applications.

3. High school level curricula for workshops to teach basic machine learning prin-

ciples based on PIC and the MIT App Inventor extension.

4. Results and discussion from usability studies with two classes of high school

students from Boston Latin Academy.
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Figure 6-2: The PIC web app allows users to easily create image classification models
to recognize objects. The only task required is to specify the objects as labels and
take example pictures of the objects using their webcams.
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Figure 6-3: The PIC extension for MIT App Inventor enables users to upload their
trained models through the extension’s properties. The blocks provided by the ex-
tension will utilize the uploaded model to perform classifications.
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6.1 MIT App Inventor

MIT App Inventor is a free and open-source web platform that allows users to cre-

ate mobile applications through a blocks-based programming language and high level

abstractions (see Figure 6-4). Since its development began in 2009, the primary goal

of MIT App Inventor has been to democratize the creation of mobile applications by

allowing people with little to no programming experience to create highly functional

apps [56]. Through MIT App Inventor, users can build apps that interface with sen-

sors in their smartphone and the web as a whole, including the smartphone camera,

accelerometer, text messaging, voice calls, external Bluetooth/IoT devices, and inter-

net connectivity. Due to its low barrier of entry, MIT App Inventor is used as the

primary teaching tool for many introductory programming classes and workshops tar-

geting students anywhere from late elementary school to university and professional

level. This web interface is available worldwide, with 8.2 million registered users

from 195 countries that have created a total of 34 million applications. MIT App In-

ventor’s accessibility to young students and popularity as an international computer

science teaching tool makes it a great platform for introducing applicable ML to a

wide audience.

In the base web application, MIT App Inventor users can drag in components that

interface with the internet and features of their mobile devices. For example, there

are components for making API requests and for using the phone’s camera. Users

may also upload extensions [61] to MIT App Inventor that permit the use of more

components, such as additional Bluetooth functionality.

6.2 Prior Work

The development of the PIC project was inspired by prior work in public ML tools

for high school students and the general public: tools created by the PAIR and

TensorFlow.js teams and another tool created at MIT App Inventor.
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Figure 6-4: An MIT App Inventor project is built using both a designer interface and
a blocks interface. The Designer interface (top) allows users to drag-and-drop and
customize components such as buttons onto a mockup Android screen. The Blocks
interface (bottom) provides code blocks that can be arranged to form basic programs.
This example shows an implementation of the "Mole Mash" tutorial from the MIT
App Inventor website [58].
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6.2.1 TensorFlow.js and Webcam Pacman

TensorFlow.js is a JavaScript library for training and deploying ML models in the

browser or on Node.js [116]. The TensorFlow.js website provides resources for users to

start working on projects, such as code demos, prebuilt models, and data visualization

tools.

The TensorFlow.js team used their library to create a demo called "Webcam

Pacman," [126] a browser game where players can play Pacman using a machine

learning model. Players first use part of the game’s interface to train an image

classifier to recognize images with labels corresponding to the four directions of in-

game movement. When the game starts, they can play by placing the correct objects

in front of their webcam to move.

In Webcam Pacman, the model is trained using transfer learning (see Section 4.3).

The images are inputted into a pre-trained MobileNet model [48]. The outputs from

the last convolutional layer of this model are further passed into a smaller model to

be trained. Transfer learning provides two benefits for Webcam Pacman: the model

performs efficiently in a browser, and despite providing small datasets through the

webcam, transfer learning gives reasonable results.

6.2.2 The What-If Tool

What-If is an analysis tool by PAIR that allows users to analyze TensorFlow machine

learning models without customizing the code [136]. Given a TensorFlow model and

a dataset, What-If provides an interactive visual interface for exploring inference re-

sults, specifically, data points on a grid. This grid allows the user to pick multiple

dimensions to sort the data points. Additional capabilities include generating confu-

sion matrices, displaying counterfactual pairs of data points, and allowing the user to

edit individual data points’ features. What-If lowers the technical barrier to analyzing

model behavior. Non-programmers can use the interface to evaluate inference results

and develop intuition for model performance.

158



6.2.3 Teachable Machine

Teachable Machine is a web app built using TensorFlow.js that allows the general

public to play with image classification [118]. Users use pictures from webcams to

train three built-in classes on their browser. The webcam takes continuous video and

determines which class is most similar. The advantages of Teachable Machine are:

(1) it requires no programming experience, and (2) it allows easy data input with

minimal file formatting constraints and no preprocessing.

As mentioned in Chapter 4, the Deep Learning Practicum course used Teachable

Machine to introduce k-nearest neighbors and transfer learning. In class, students

experimented with the interface and were given suggestions for ways to train combi-

nations of objects. Each suggestion asked students to intuit the rationale for certain

results, and whether these results are expected or surprising. Students with no pro-

gramming experience were able to address the suggestions and design variations.

Playful and intuitive tools such as Teachable Machine help students self-learn and

analyze concepts and behaviors of machine learning.

6.2.4 MIT App Inventor’s Look Extension

MIT App Inventor recently produced "Look", an extension that allows users to in-

corporate ML into their mobile applications. The Look extension provides a set of

blocks for users to perform image classifications using cameras on their mobile devices

[57]. Look uses MobileNet, a deep neural network with high accuracy on the Ima-

geNet dataset and relatively low memory requirements that was specifically designed

to allow mobile devices to run a high-performance image classification model [48].

The decreased computational power required allows mobile devices to load models

and classify images in real time. However, the MobileNet model is limited by its

training dataset (ImageNet [23]) and can only classify the 1000 ImageNet labels of

plants, animals, man-made objects, and geological formations. The PIC project was

motivated by a desire to personalize the types of image classifications that MIT App

Inventor users could run so that they could include specific classes relevant to the
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apps that they want to make.

6.3 The PIC Web Interface

In order to appeal to the target audience of young ML novices, the interface needs

to have no coding requirement, be intuitive to use, be personalizable, and allow users

to quickly train ML models. For the no coding requirement, interactive elements

provide data and structure normally handled by altering code. Users can add and

delete model labels and tweak model layers and parameters. Almost every aspect of

the training model can be changed in the interface without writing code.

The interface is made to be more intuitive through a progress bar that tracks

the model creation process. There are four steps in total: (1) training, (2) model

selection, (3) testing, and (4) viewing results. Each step has a tab and task, exposing

users to relevant features only. Users enter Step 1 upon visiting the interface, and

advance or return to steps using "next" and "back" buttons or by clicking on steps in

the progress bar. When switching between steps, all data such as labels and examples

added are preserved.

Personalization is implemented by allowing users to train image classification mod-

els for any application. Text boxes for labels are provided, and no constraints are

placed on data from the webcam.

Low training time and high accuracy on smaller datasets are achieved through

transfer learning. Users can train a smaller model (the "target" model) using knowl-

edge learned by a pretrained model (the "source" model). This method was adopted

from Webcam Pacman: the user’s webcam images are first passed into a source model;

and activations from the second to last layer of the source model are used to train

a target model. Large source models are limited by training time. Thus, the inter-

face provides two options for small source models: MobileNet, as used in Webcam

Pacman, and SqueezeNet, as used in the Look extension. The target model provides

the final classifications for labels specified by the user and is made small by default,

although the user can add layers.
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Figure 6-5: The UI for the training step for adding labels and images.

6.3.1 Programming Tools Used

The PIC web interface was written with HTML and JavaScript and stylized with

CSS. TensorFlow.js handles all machine learning tasks such as training and model

download. The application is run using Node.js with Yarn as the package manager.

It is hosted using http-server on a Linux virtual machine provided by MIT App

Inventor.

6.3.2 Step 1: Data Input

In Step 1, users add labels and provide examples using webcams. The Step 1 UI has

two columns (see Figure 6-5). The left column contains information about the labels

added by the user, while the right column contains a webcam feed with a button for

adding examples. The user may also upload images from their computer through the

“Browse” button to the right of each label.

All labels and examples are saved in the browser and deleted if their label is

removed from the interface. A dedicated JavaScript file containing a class named

"Dataset" handles all operations regarding adding, removing, and formatting images
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and labels. Two instances of this class are instantiated for the training data: one to

contain activations from MobileNet and one to contain activations from SqueezeNet.

The instance used depends on the source model selected in Step 2. Three main

components are saved: labels, images, and activations from a source model.

When an image is inputted by the user, the following occurs:

1. The image is converted to a tensor so that it can be used with TensorFlow.js.

2. The tensor is passed through MobileNet and SqueezeNet. Activations on these

tensors from the models’ second to last layers are kept.

3. For each source model, both the original image and its activation are saved in

the model’s corresponding dataset.

Model training time was optimized by saving a different training set for each

source model, which did not substantially affect the webapp’s memory requirements.

6.3.3 Step 2: Model Editing and Training

In Step 2, users can choose the source model and tweak the target model for the PIC

transfer learning process. The UI has two columns (see Figure 6-6) for editing and

training the model respectively. Beginners can accept default values provided, and

bypass model editing. Training is initiated in the second column, and training time

and model loss are displayed. When training is complete, users are automatically

brought to Step 3 for testing.

The left column allows selection of the source model, editing of the layers of

the target model, and editing of model hyperparameters. The default model has

one convolution layer, one flattening layer, two fully connected layers, and ends in

one softmax layer that is not shown. Layer types that can be added include fully

connected, convolution, max pool, and flattening. Layer parameters, such as window

size and stride, may be edited. Editable model hyperparameters include learning rate,

number of epochs, fraction of the training set to use as the batch size, and optimizer

function.
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Figure 6-6: The UI for the model editor step. Users can tweak details about their
model and start the training process here.

Model editing is handled with its own JavaScript file, which contains two key

classes: "LayerNode" and "LayerList". A LayerNode is a flexible representation of

a single layer in the model, and stores all parameters associated with the layer. It

also contains a method to create the layer’s associated HTML elements to append

to the interface. A LayerList is a doubly linked list that connects all the layers of

the user’s custom model. LayerLists allow adding and removing layers, and checking

model validity and generating various invalid model messages. During training, each

layer is added sequentially to a sequential model using TensorFlow.js.

During training, a method in the training dataset instance formats the dataset’s

images and their corresponding labels as inputs to the model training method. This

method outputs an object that contains three tensors. The first tensor contains all

of the dataset’s images’ activations. The second tensor contains all of the dataset’s

images’ labels after they are mapped to numerical indices. A separate mapping of

these indices back to the text labels is calculated and stored, so that the original labels

can be retrieved from model predictions. The third tensor contains all original images

from the dataset, which is used to make thumbnails for the results page in Step 4.
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Figure 6-7: The UI for the model testing step. Users can add new images in the same
way as in Step 1 to create a new testing dataset.

After these tensors are obtained, the dataset’s activations and indices are passed over

to TensorFlow.js’s model training method, alongside the hyperparameters set by the

user.

6.3.4 Step 3: Model Testing

The UI for model testing is similar to that of Step 1, but the data collected during

this step is used for testing instead of training (see Figure 6-7). When the “Pre-

dict” button is pressed, the testing images are passed through the source model, and

then the appropriate activations are passed into the target model to output the final

predictions. A separate instance of the "Dataset" class is instantiated to handle all

images added to the testing set. After prediction of labels, users are brought to Step

4.

164



Figure 6-8: The UI for the results step. Users can analyze their model’s predictions
on the testing set here.

6.3.5 Step 4: Results and Analysis

Step 4 helps users gain insight into model behavior and inform retraining. Users can

view top three predictions for each testing image, select analysis tools (confidence

graphs vs correctness tables), and compare images side by side (see Figure 6-8).

Formatting results is handled by a separate JavaScript file containing a class

named "Results". An instance of this class is constructed when the model finishes

the prediction task. This instance stores all of the data needed to display results to

the user, including:

1. A mapping of model prediction indices to label names.

2. A tensor of the testing images, to use in thumbnails and in the comparison

canvases.

3. A tensor of model prediction indices, where every three indices correspond to

the top three predictions for each image.
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4. A tensor of model prediction values, where every three values correspond to the

top three predictions for each image.

5. A tensor of the images’ actual labels as model indices.

Each component in the results page that displays an image thumbnail and/or

prediction values relies on a method called getResult from the Results class. This

method formats a single image’s result data into a JavaScript object that contains

the image, the name of its actual label, the names of its top three predicted labels,

and its top three predicted values. There are additional helper methods to track

image indices, and a method to return results for all images, to help populate the

analysis tools.

Correctness Table

The default analysis tool displayed in the middle of the results page is the Correctness

Table, which shows all testing images and whether the classification was correct (see

Figure 6-8). If the model’s top prediction matches the true label (regardless of the

probability value), the classification is correct. This table helps users assess why

specific images were classified correctly or not. Common points of discrepancy or

similarity that can be assessed include details in object positioning, angle, lighting,

color, background, and proximity to the webcam.

Confidence Graph

The other analysis tool available is the Confidence Graph (see Figure 6-9). For a

given label, this graph buckets all testing images based on prediction confidence. The

confidence buckets include "medium," "high," and "very high" confidences. Very high

confidence includes prediction probabilities of 0.8 or higher, high confidence includes

probabilities of 0.6 or higher, and medium confidence includes probabilities of 0.4 or

higher. Images with lower than 0.4 confidence predictions are not displayed.

The Confidence Graph allows users to infer the characteristics of images that a

model learns for specific labels, and to plan a retraining strategy. Display of the
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Figure 6-9: The Confidence Graph shows prediction results by label. In this screen-
shot, the label selected is "surprised". A user may notice that the image classified
with the lowest confidence has the person facing the opposite direction as all of the
other images. Not shown here is the dropdown menu at the top of the graph that
lets users select which label to analyze.

analysis tools is handled by a separate JavaScript file. Each analysis tool has two

methods which are called when a user clicks on one of the analysis tool buttons: one

for building its HTML outline and one for populating it with data. These methods

employ other helper methods that interface with the Results class to obtain the

testing results. Hover and click event listeners were added to each image to power

the comparison canvases.

6.3.6 Step 5: Model Download and Upload

When downloading the model, a custom download method packages all key informa-

tion about the model in a zip file named "model.mdl". The zip file contains four

files:

1. Two files that detail the model’s topology and weight data, which are necessary

for TensorFlow.js to load the model elsewhere.

2. A JSON file that maps the model’s prediction indices to label names, so that

MIT App Inventor can translate the model’s predictions to text.

3. A JSON file with information about the source model used in the training
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process, so that MIT App Inventor can load the correct one when it needs to

make predictions.

Users can also upload the model file back into the interface, which adds the model’s

labels and allows for immediate model testing.

6.4 The PIC Extension for MIT App Inventor

The PIC extension aims to empower users to apply the models they built with the

PIC webtool to create meaningful mobile applications through MIT App Inventor.

6.4.1 Back-end

Extensions to MIT App Inventor are uploaded as ".aix" files, which are built from

all of the files needed for the extension to work. For the PIC extension, this includes

a Java file and an assets folder. The Java file, which has a class called Personal-

ImageClassifier, contains the main functionality of the extension. This class is an

implementation of the Component class, and has all of the code that builds the ex-

tension’s properties and blocks. The assets folder carries all outside dependencies

that the Java class refers to. These assets are downloaded together with the mobile

application itself, and the Java class contains an annotation that points to where

these assets are.

Since the PIC webtool uses TensorFlow.js to train and download models, Tensor-

Flow.js is also used in the extension to load these models and to make predictions.

The following files are added to the assets folder:

1. The TensorFlow.js library, so that it can be used locally in the mobile applica-

tion.

2. Files containing all of the information needed to load MobileNet and SqueezeNet

with TensorFlow.js.
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3. A Javascript file containing all of the methods and logic for using TensorFlow.js

to load the source models, to load the trained target model, and to make pre-

dictions.

4. An HTML file that will load the TensorFlow.js library and aforementioned

Javascript file, as well as allow us to interface with the main Java class of the

extension.

After these files are included, the main Java class has to be able communicate

with the Javascript file. The solution to this is to include a WebViewer component

as a property of the extension. Typically in MIT App Inventor applications, this

component allows the user to view web pages, but it also has the ability to handle

Javascript. In the extension, the component loads in the HTML file, which in turn

loads in the TensorFlow.js library and Javascript file. This gives the WebViewer

access to the Javascript file’s methods so that they can be called from the Java file.

Finally, the WebViewer component provides a client for the Javascript file to make

API requests to fetch files for loading models: the Javascript sends API requests for

these files, and the client receives them and returns the files in its response.

The final piece needed to make the extension work is support for reading the

".mdl" files downloaded from the PIC interface. Since this file is uploaded to MIT

App Inventor as a property of the PIC extension, the Java class receives the path of

where the file is located. This path is saved in a private field in the class so that the

model file can be accessed multiple times. Whenever this file needs to be opened, a

zip file reader from Java’s utils library is employed.

When the Javascript file is first loaded by the WebViewer component, it sets up

all of the TensorFlow.js models it needs using the following series of API requests:

1. A request is sent to get information about what transfer model to use. The

WebViewer client responds with the JSON file containing this information from

the model file.

2. Multiple requests are sent to get all parts needed to load the correct transfer
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model. The WebViewer client responds with the corresponding files from the

assets folder.

3. Two requests are sent to get the model topology and weights to load the user’s

trained model. The WebViewer client responds with these files from the model

file.

4. A request is sent to get a mapping of model outputs to label names. The

WebViewer client responds with the JSON file containing this mapping from

the model file.

6.4.2 Extension Properties and Blocks

The PIC extension has three properties in the designer and 11 blocks in the blocks

editor. It shares many blocks with the Look extension, which was used as a starting

point. All of the PIC extension’s properties and blocks are outlined in Table 6.1.

Block Image Function

a.

The InputMode property has two set-

tings that control if the extension

takes pictures from a continuous video

feed or from a single camera snap-

shot. The Model property is where

users can upload and select model files

from the PIC interface to use. The

WebViewer property is where users

can attach a WebViewer component

to use the extension with.
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b.

The ClassifierReady event block is

triggered when the extension is fin-

ished loading the user’s model and

transfer model. This block is the

starting point of functionality that

uses this extension.

c.

The Error event block is triggered

when the extension runs into any er-

rors. It returns the number code that

is associated with the error.

d.

The GotClassification event block is

triggered when the extension is fin-

ished performing a prediction on an

image. The event is expected to be

fired after either the ClassifyImage-

Data or ClassifyVideoData blocks are

run. It returns a list of lists of the top

3 prediction results.

e.

The LabelsReady event block is trig-

gered when the extension is finished

fetching the model’s labels. The event

is expected to be fired after the Get-

ModelLabels block is run. It returns a

list of the model’s labels.
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f.

The ClassifyImageData block initi-

ates the classification of an image that

it takes as an input. When the classi-

fication is complete, the results are re-

turned through the GotClassification

event block.

g.

The ClassifyVideoData block initi-

ates the classification of the current

screenshot in the camera’s video feed,

which may be seen using the Web-

Viewer component. When the classi-

fication is complete, the results are re-

turned through the GotClassification

event block.

h.

The GetModelLabels block initiates

the fetching of the uploaded model’s

labels. Results are returned through

the LabelsReady event block.

i.

The ToggleCameraFacingMode block

switches the user’s camera mode be-

tween selfie and outward facing.

j.

The InputMode getter block returns

the current setting of the extension’s

InputMode property.

k.

The InputMode setter block allows

users to set the extension’s Input-

Mode property. There are two op-

tions: "Video" and "Image".
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l.

The PersonalImageClassifier getter

block returns a specific PersonalIm-

ageClassifier extension instance.

Table 6.1: An overview of the PIC extension’s properties and blocks.

6.5 Usability Workshops with High School Students

To test the usability and effectiveness of the PIC webtool and extension for engaging

novices in ML, we designed and conducted workshops for high school students. The

workshops were run with two classes of AP Computer Science Principles (CSP) [15]

students from Boston Latin Academy on March 12, 2019 and March 15, 2019. Each

workshop lasted for two class periods, each about 50 minutes long. These students

were inexperienced in ML but had prior experience using MIT App Inventor through

the AP CSP class.

The workshops involved creating a mobile game that awards users with points for

making specific facial expressions. The game detects facial expressions using an image

classifier that the user trains on their face. Points are awarded based on whether or

not the prediction matched the goal expression and how high the output probability

is. The lesson plan, informational video, teacher guide, slides, and tutorial worksheets

created for these workshops are accessible for free on the MIT App Inventor website

[60].

The first workshop introduced machine learning and involved using the PIC inter-

face to build a model for recognizing various facial expressions (see Table 6.2). The

workshop began with a short introduction to basic concepts of ML. Then, students

split up into groups of 4-5 to build image classifiers for recognizing facial expressions of

their choice. Instructors were available to answer questions and provide suggestions.

The second workshop involved having students use the PIC extension in MIT App

Inventor and the models they trained (see Table 6.3). The students were provided the
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Time Activity
7 min Introductions, explanation of MIT App Inventor and purpose of study,

pre-questionnaire.
10 min Introduce CSP students to Machine Learning. What is it? What does

it mean?

∙ Compare it to a function (a "box" that receives inputs and out-
puts answers), but is different in that there may not be a clear
answer for machine learning tasks.

∙ Give examples (speech recognition, text generation, image classi-
fication).

∙ Introduce how machine learning models get better at their tasks
by repeatedly training and testing. Give basic tips on how to
approach this such as adding many varied examples.

33 min Students split into groups to use the PIC interface to train a model to
recognize their facial expressions. A tutorial on how to use the interface
was provided. Make sure that they download their models at the end
of class.

Table 6.2: First PIC workshop lesson plan.

mobile application file to upload to MIT App Inventor, and uploaded their models

to the application using the extension. Instructors were again available for questions

and suggestions.

6.5.1 Instruments

Written questionnaires were collected before the first workshop and after the second

workshop. Questions fit into three categories: understanding of machine learning

concepts, understanding of ML applications, and effectiveness of tools used. The

pre-questionnaire had 16 questions and gauged students’ prior experience in and un-

derstanding of machine learning. Topics included prior exposure to machine learning,

common ML applications students saw or used, feelings toward machine learning, and

the most important parts of a machine learning project.

The post-questionnaire had 29 questions and focused on all three categories of
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Time Activity
25 min Students have more time to work in their groups to create image clas-

sifiers. Ask them to use what they learned from the first workshop to
create new models that perform better.

15 min Use the PIC extension for MIT App Inventor.

∙ Download the application file and upload it to MIT App Inventor.

∙ Upload the model using the PIC extension.

∙ Play the game on a mobile device.

∙ Iterate over the model again if necessary.

10 min Have students fill out the post-questionnaire.

Table 6.3: Second PIC workshop lesson plan.

questions. It repeated most questions from the pre-questionnaire, and added ques-

tions about students’ experiences with the PIC tools and during the workshop. Topics

included the ease of using the PIC interface, interesting results from using the anal-

ysis tools, and student confidence in discussing their project with others. The post-

questionnaire sought to both measure what the students learned from the workshops,

and the effect of PIC tools on learning.

6.5.2 Results

The workshops were run with two classes of high school students, who ranged between

10th and 12th grade. The two classes had 26 and 28 students, respectively. We

obtained consent for research from 15 students from the first class and 8 from the

second class.

Prior Exposure to Machine Learning

When asked about prior exposure to machine learning on the pre-questionnaire, al-

most all of the students were aware of past exposure to ML regardless of knowledge

of ML.
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Question Mean Range
How confident do you feel about explaining/discussing ML
with a non-technical person?

0.77 0-2

How confident do you feel about explaining/discussing ML
with an expert?

0.32 0-1

Table 6.4: Pre-questionnaire means and ranges for students’ responses to how com-
fortable they would be discussing machine learning with others.

Explanation of Machine Learning

To evaluate students’ understanding of machine learning pre- and post- our work-

shops, we asked students how they would explain ML to an ML-naive friend. On the

pre-questionnaire, most of the students either did not know what machine learning

was at all, or had unclear ideas as to what it was.

On the post-questionnaire, there was a clear overall improvement in understand-

ing among the students. The students’ responses had greater depth that revealed

knowledge about ML processes and data in particular (e.g. "giving data to a ma-

chine in order for it to learn and automate a process" and "technology learning to

recognize or perform certain tasks based on patterns/info that you give them."). Fur-

thermore, many students incorporated their projects into their explanations. These

results showed that students understood that ML systems learn patterns from human

generated data, and that students could see themselves as generators of data.

Comfort With Discussing Machine Learning

Students rated their own levels of comfort with discussing machine learning with both

non-technical people and with experts on a 0-3 Likert scale, where 0 = No confidence

and 3 = High confidence. In the pre-questionnaire, students were not confident in

their abilities to converse about machine learning with others (see Table 6.4).

In the post-questionnaire, students’ confidence improved (see Table 6.5). No stu-

dent felt that they had no confidence in talking to a non-technical person about ML,

and 3 students felt like they could talk to experts with high confidence. These results
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Question Mean Range
How confident do you feel about explaining/discussing ML
with a non-technical person?

1.86 1-3

How confident do you feel about explaining/discussing ML
with an expert?

1.41 0-3

Table 6.5: Post-questionnaire means and ranges for students’ responses to how com-
fortable they would be discussing machine learning with others.

Question Mean Range
How much do you agree: I enjoyed using the Personal Image
Classifier web tool

2.35 2-3

How much do you agree: The Expressions Match app was fun
to use

2.57 2-3

How much do you agree: The Personal Image Classifier web
tool was confusing

1.04 0-2

Table 6.6: Post-questionnaire means and ranges for students’ responses to questions
asking about their experiences using the tools we built.

show that the workshops are capable of empowering students to engage in machine

learning tasks and discussions.

Effectiveness of Tools

During the workshop, students spent almost all of their time using either the PIC in-

terface or playing the mobile game containing the PIC extension. The post-questionnaire

demonstrated that all of the students enjoyed using the tools. When asked about the

most fun part of the workshop, 17 of the responses were about taking pictures of

their own facial expressions and 3 of the responses were about playing the game at

the end. Almost all students did not find the PIC interface to be confusing to use

(see Table 6.6). These results suggest that the interface is likely usable and intuitive

for beginners with no prior machine learning experience.

When asked how they used the analysis tools, students responded that they were

either able to analyze their results or use them to further improve their models.

Some students were able to use the analysis tools to develop reasoning for why their
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models were behaving in certain ways (e.g. “We kept getting low scores. Then when

we zoomed in to take pictures, our scores were much higher. That’s because they

were zoomed in during the model ”). Other students were able to recognize strange or

interesting behaviors of their models through the analysis tools, even if they could

not act upon those behaviors (“it recognized people making different shirt colors and

expressions as the same people”). Overall, these results suggested that students were

able to develop intuition into their ML models through the analysis tools.

6.6 Discussion

PIC was well-received in the MIT App Inventor community after its release, and

has been included in many K-12 AI education collections by various institutions and

organizations [107, 40, 140, 4]. Notably, PIC is being used internationally by the

National Taiwan Normal University in elementary and junior high AI curricula. Re-

searchers created the “AI 2 Robot City” curricula, which combines PIC with MIT App

Inventor robotics components to make a game-based “instructional tool and model

integrating the personal image classifier of MIT App Inventor with a computational

thinking board game named ‘Robot City’.” [50]. Teacher training sessions have con-

tinued through the COVID-19 pandemic to help teachers support student learning of

AI through online education (see Figure 6-10).
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Figure 6-10: PIC teacher training at the National Taiwan Normal University [50].
The PIC webtool and extension are used in the “AI 2 Robot City” curriculum for
K-12 to classify cards that guide a robot car through a simulated city.

179



180



7

The PAC Tool: Personal Audio

Classifier

In this chapter, I present the Personal Audio Classifier (PAC), a public ML tool

similar to PIC for high school and above students. PAC allows users to train and

test their own audio classification models, and apply these personalized models in

mobile applications built using MIT App Inventor. PAC was built with the same

motivations and overarching design principles as PIC. I will discuss the technical

challenges of PAC that differed from PIC and the improvements made to the user

interface. PAC is hosted at https://c1.appinventor.mit.edu/. Most of the material in

this chapter has been previously published [12, 11].

7.1 Differences and Design Improvements from PIC

Due to PIC’s popularity in MIT App Inventor, many users requested a similar tool

for classifying different types of sounds. The PAC webtool obtains short audio clips

from a computer’s microphone, converts the audio data into image representations of

the spectrum of frequencies and amplitudes as they vary with time (spectrograms),

and then uses transfer learning to train a spectrogram classification model in a similar

way to PIC. Users may then upload these models into the PAC MIT App Inventor

extension to use within their mobile applications.
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We incorporated feedback from PIC users to improve on the design and flow of

PAC. Instead of giving users the ability to select a source model, architect the target

model, and set hyperparameters, Step 2 of PAC only involved tuning the hyperpa-

rameters of a preset transfer learning model. We found that only the hyperparameters

had much impact on the model’s final performance and that the model architecture

portion made many users feel confused or overwhelmed, especially since most middle

school and high school level curricula do not go into the details of how each layer of

a neural network works.

We also condensed Step 3 and 4 from PIC (3: Model Testing and 4: Results and

Analysis) into one step in PAC so that users could input new test examples and see

the results live. We modified the analysis tool from Step 4 of PIC to just a simple

correctness table in PAC, since the confidence graph was not as useful to students.

Finally, we made extra efforts to make PAC more colorful and have a sharper

looking UI: public ML tools for K-12 should be visually appealing to grab the attention

of students and teachers, but PIC was not very visually appealing to many students.

7.2 Theoretical Considerations of Spectrogram Au-

dio Classification through Image Classification

PAC uses spectrogram image representations of audio. Spectrograms allow visual-

ization of frequency, time, and amplitude, by computing the Fast Fourier Transform

over short overlapping sample windows across the audio file. An example spectrogram

of a three-second audio clip with a sample rate of 44,100 Hz is shown in Figure 7-1

[45]. In the past 3 years, Khamparia and Boddapati have shown that existing image

classification techniques can achieve impressive results on spectrogram audio clas-

sification tasks with very few changes to typical convolutional model architectures

[65, 13]. These results provide the basis for building an in-browser audio classifier

using spectrograms as the data representation.

182



Figure 7-1: The final spectrogram output depicting frequency, amplitude, and time
over a three second saxophone clip [45].

7.3 The PAC Web Interface

While many existing in-browser tools have targeted the widely popular domain of

image classification, less work has been done to make the field of audio classification

more accessible to students and ML novices. PAC was built to offer a simple and

accessible tool to empower those without significant ML knowledge to understand and

utilize audio classification in their own research, projects, or applications. The PAC

front-end is built primarily in React, with custom components written in JavaScript.

The front-end server is hosted via Express and Node. The spectrogram back-end is

written in Python, and the back-end server is hosted via Gunicorn and Flask. Both

servers are hosted on a Linux virtual machine owned by MIT CSAIL.

7.3.1 Step 1: Data Input

On the initial landing page for PAC, users begin building a custom audio classifier.

The UI allows users to record audio clips and add classification labels. Each label

corresponds to an instance of a "Label" React component, with its user-specified

name, and an initially empty dataset of training images (see Figure 7-2). Each label
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Figure 7-2: The initial PAC web interface provides a recording interface and a button
to add custom classification labels. Upon entering a label name, a label is added
to the right column of the PAC UI. Each label is associated with an initial empty
dataset of training images.

has a number of functions that allow for spectrograms to be added to and removed

from the dataset.

During recording, a custom React library opens the device microphone for one

second, recording the device’s input audio as a WAV file. The WAV audio file is passed

to the PAC back-end via an API call, where the file is converted to a spectrogram

image. The spectrogram PNG is then returned to the front-end and stored in memory

in the label’s training dataset via a temporary data url. Finally, a preview of the audio

spectrogram appears in the label’s UI component and the indicator for the number

of training samples is updated (see Figure 7-3). After recording at least two audio
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clips for each classification label, users can begin training the model using the model

tuning UI.

The PAC back-end is responsible for receiving WAV audio files through a Flask

API, performing a variety of audio modifications, and creating a spectrogram image

from the audio recording. It is accessible via a Python Flask API served from a

Linux virtual machine running on an MIT CSAIL server. The server listens via a

"/spectrogram" POST endpoint on the 5000 port. This endpoint receives requests

from the frontend, unpacks the request body into a local WAV file, and calls a helper

function to perform the audio modification and spectrogram conversion.

After the request body is unpacked into a local WAV file, the back-end extracts the

left audio channel from the stereo signal. Then, a helper function removes beginning

or ending silence in the audio clip by iterating over all audio chunks in the recording

and removing the first and last continuous audio segments that register below -20

decibels. This feature was added after extensive user testing showed that user input

recordings were rarely centered in the recorded audio clip. If a user were to record

two identical word samples, the resulting spectrograms might look different if the

user were to start speaking the word during different segments of the recording. By

removing any leading and lagging silence in the input recording, we ensure that the

user’s input audio is centered in the recording.

Next, the back-end splits the audio recording into 10ms chunks and removes any

remaining chunks that register audio below -50dB. User testing showed that this

feature made PAC models far more flexible and accurate across a variety of use cases.

The intuition for this is that various users might record the same phrase, word, or

number, but differences in pronunciation speed might lead to small differences in the

spectrogram output. By removing naturally occurring silence in input audio clips,

we can better standardize recordings to contain only audio content that will reflect

meaningful frequency information in our spectrogram outputs. It is important to note

that we apply a more strict silence requirement for chunks in the middle of the audio

recording to ensure that important audio content is not significantly altered.

Lastly, the processed audio recording is passed through a spectrogram conversion

185



Figure 7-3: When multiple classification labels have been entered, users can select
a label from the dropdown for which the recording component will record audio
clips. When the "Record" button is clicked, the waveform visualizes the microphone’s
input and records the next one second of audio. Audio clips are passed to the back-
end, returned as spectrogram images, and added to the corresponding label training
dataset.
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function. This function splits the audio data into segments of length equal to the

audio recording’s sample rate, and computes the frequency spectrum for each section.

A windowing function is then applied to each audio segment to connect the audio

segments into a time dependent color-map.

7.3.2 Step 2: Model Tuning and Training

In Step 2, the user is able to modify the hyperparameters of the transfer learning

model that will be trained to distinguish between user-specified audio classes (see

Figure 7-4). PAC allows users to tweak their model in the following ways:

1. Learning Rate: a hyperparameter that controls how much the weights of the

neural network are adjusted with respect to the loss gradient.

2. Optimizer: a hyperparameter that ties together the loss function and model

parameters by updating the model in response to the output of the loss function

in a specific way.

3. Epochs: the number of complete passes made through the training dataset.

4. Training Data Fraction: the fraction of the training dataset to use as the batch

size.

These four hyperparameters were informed through experimentation with training

the PAC model and through feedback from students who worked heavily with transfer

learning models through PIC or the Deep Learning Practicum course.

After users customize hyperparameters and press "Train Model," the training

datasets are passed through a pre-trained MobileNet model. Then, the output is

used to train a custom five-layer image classification model with the user-specified

hyperparameters. The steps for this process are as follows:

1. Each spectrogram in each label dataset is retrieved via data url and converted

to a tensor for use in TensorFlow.js.
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Figure 7-4: The model customization popup. Users can modify hyperparameters for
their custom model as they see fit.

2. The tensor is passed through a modified, pre-trained MobileNet neural net-

work, and the image tensors are replaced by the corresponding activations from

MobileNet’s second to last layer.

3. A custom five-layer model is trained to the specifications supplied by the user,

with the MobileNet activations as the input. This model is composed of a single

convolutional layer, followed by a flatten layer, two fully connected layers, and a

single softmax layer. This architecture is designed to output a standard tensor

with probabilities distributed across the various user-specified labels, where an

output probability corresponds to the probability that the input spectrogram

belongs to that label.

While the model is being trained, the PAC UI shows an interim training screen

with continuously updating model loss values (see Figure 7-5). After the training is

completed, users are immediately brought to the testing screen.
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Figure 7-5: An interim loading screen shows training progress as well as the current
model loss.

7.3.3 Step 3: Testing

In Step 3, users can record new audio clips for testing and see how their trained

model classifies these new recordings. The UI shows the functionality from Step 1 for

recording clips on the left, visualizes the input spectrogram in the middle, and lists

the user-specified labels on the right. After the front-end receives the corresponding

audio spectrogram from the back-end, the following steps occur:

1. The spectrogram is passed through the same pre-trained MobileNet model used

in the training process.

2. The resulting activations are passed through the trained user model; the softmax

layer outputs an array of probabilities that correspond to the array of labels,

such that the probabilities sum to one.

3. The output probabilities are assigned to the labels and the label with highest

probability is chosen as the "winning" classification.

The UI proceeds to highlight the "winning" label in green, with all other labels

highlighted in red. Users can hover over each label to view the model’s corresponding

output probability (see Figure 7-6).

Scrolling down below the main view brings the user to the "Test Results" view,

where users can visualize the results of their test audio clips (see Figure 7-7). In

this view, spectrograms inputted during the testing phase are organized by how they

were classified. Their corresponding confidence is shown under each image. Users can

use these results to gain a better understanding of the features in spectrograms that

might lead to correct and incorrect classifications, and distinguish between higher and
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Figure 7-6: The initial testing view is made up of a recording component, a spec-
trogram visualizer component, and a label view component. Users record audio clips
that are then passed through the trained model. The model outputs probabilities
associated with each label and highlights the "winning" classification in green. Users
can hover over labels to see classification confidences.

lower confidence spectrogram classifications. Users have the ability to return to the

training screen at any time via the navigation bar in order to improve their model,

either by removing buggy training examples, or by adding new training examples

based on the insights they glean from the test results.

7.3.4 Step 4: Model Download

Similar to PIC, the web interface for PAC also has an "Export" button on the testing

screen that allows the user to download the model they have trained. The ".mdl" file

contains three files:

1. A model topology file detailing the architecture of the pre-trained MobileNet

model.

2. A weights file detailing the weights of the pre-trained MobileNet model.

3. A JSON file mapping the model’s predictions indices to their corresponding

label names.
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Figure 7-7: The PAC test results interface. Test audio clips are organized by their
corresponding classification.

7.4 The PAC Extension for MIT App Inventor

The PAC extension aims to empower users to apply the models they built with the

PAC webtool to create meaningful mobile applications through MIT App Inventor. It

was built similar to the PAC extension but uses the WebViewer component for audio

input in order to decrease the number of blocks required. The WebViewer component

assigned to the PAC extension is configured such that a user may tap it to record an

input audio clip. The PAC extension has two properties in the designer and 4 blocks

in the blocks editor (see Table 7.1).

Block Image Function
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a.

The Model designer property allows

users to upload and select a model

exported from the PAC interface to

use in making predictions. The Web-

Viewer property allows users to spec-

ify a WebViewer component to use

with the extension.

b.

The Error block triggers when an er-

ror is encountered in the extension,

and returns the code associated with

that error.

c.

The GotClassification block is trig-

gered after an audio clip is recorded

and passed through the PAC model.

The resulting classification output

(the sound parameter) is returned in

a list of lists with the top three pre-

diction results.

d.

The ClassifierReady block is triggered

when the extension has finished load-

ing the MobileNet and PAC models.

e.
The PersonalAudioClassifier block

returns a specific extension instance.

Table 7.1: An overview of the PAC extension’s properties and blocks.
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7.5 Usability Workshops with High School Students

To evaluate the effectiveness of the PAC webtool and the PAC extension as a learn-

ing tool for machine learning novices, we ran workshops for classes of students with

limited ML experience. We designed and ran six workshop sessions with three AP

Computer Science Principles (CSP) students at the Boston Latin Academy. Each

class period lasted 55 minutes, and each student engaged with the workshop material

across two sessions. The Boston Latin Academy classes provided a perfect work-

shop environment to test PAC and its related tools as students had prior experience

using App Inventor tools, but had limited exposure to machine learning. The cur-

riculum was designed around PAC and the PAC extension and focused on conveying

important concepts related to artificial intelligence, data representations, and image

classification. Hands-on activities were designed to engage students with in-browser

neural networks and discussion topics were chosen to encourage students to think

about the real-life implications of ML.

Data from the workshops was gathered via a pre- and a post- questionnaire, which

were nearly identical to the questionnaires from the PIC study. These questions pro-

vided insight into student understanding of basic ML concepts, awareness of ML

applications in the real world, and feelings toward the PAC webtool and PAC exten-

sion for MIT App Inventor. Each of the three AP CSP classes participated in the

study over two workshop sessions. The student guide created for these workshops is

accessible for free on the MIT App Inventor website [59].

In the first workshop session, the primary goal is to introduce students to fun-

damental machine learning ideas, and encourage them to think critically about the

implications of machine learning in their everyday lives. Students start by discussing

the features of an intelligent being, and agree as a class on a definition for artificial

intelligence. Students then test this definition and discuss whether various pieces of

technology fall under the classification of artificially intelligent. The first workshop

also introduces the first in-browser machine learning tool, Google Quick Draw, and

gives students the opportunity to explore doodle classification and learn more about
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Time Activity
10 min Introductions, explanation of MIT App Inventor and purpose of study,

pre-questionnaire.
10 min Introduce CSP students to Artificial Intelligence. What is it? What

does it mean? Exercises:

∙ Explore what it means to be artificial.

∙ Deciding what makes a human, animal, or object intelligent.

∙ Defining artificial intelligence as a class.

15 min Explore the ubiquity of machine learning tools in our everyday lives.
Exercises:

∙ Brainstorm examples of AI in our lives.

∙ Segment examples by understanding vs. learning vs. planning.

∙ Play an "Is this AI?" game as a class.

20 min Interactive introduction to practical machine learning using Google
Quick Draw. Exercises:

∙ Explore the interactive Quick Draw game.

∙ Discuss how Quick Draw uses data and AI.

∙ Discuss sources of bias in Quick Draw and how they manifest.

Table 7.2: First PAC workshop lesson plan.

how models utilize large data-sets to recognize important patterns. Workshop exer-

cises are accompanied by class discussions, slideshows, and small breakout activities.

The first workshop lesson plan can be found in Table 7.2.

In the second workshop, we recap the lessons taken from Google Quick Draw, and

pivot to understanding the building blocks for image and audio classification. Stu-

dents learn the basic inputs and outputs of machine learning models, and understand

the differences between training and testing. Much of the second workshop focuses

on students exploring PAC and using what they’ve learned to build effective audio

classification models. After exploring three unique types of PAC models, students
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export their models and use the PAC extension to plug these models into a pre-built

Voice Authentication Diary mobile app. Students configure the pre-built app using

MIT App Inventor blocks and their own PAC models to “open” for the user’s voice

and not their classmates’ voices. The second workshop concludes with a discussion

of students’ successes and failures during the workshop, as well as demonstrations of

students’ applications. The second workshop lesson plan can be found in Table 7.3.

7.5.1 Results

The workshop sessions were run with three classes of high school students. Due to

changes in research policies from prior years, MIT App Inventor and the Boston Latin

Academy Research Team reached an agreement that allowed us to collect and report

anonymized data for all 18+ students in the AP CSP classes. All personalized data

was discarded after the study’s completion. We ran the workshop for 80 students

across the three classes. While questionnaire responses were collected from all 80

students, only the responses and data collected from the 28 students who were 18+

are analyzed and reported. The remaining 52 students’ responses were used to provide

general sentiments around the workshop and teaching success.

Prior Exposure to Machine Learning

In the pre-questionnaire, we asked about students’ prior exposure to ML. As expected

from prior studies with PIC in this setting, the majority of students had heard of ma-

chine learning, but fewer than a third of students were confident that they could define

it. Students were aware that machine learning has permeated their everyday lives,

but had a limited understanding of how machine learning worked and its relevance

to new technology.
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Time Activity
10 min Understand the building blocks of machine learning. How exactly does

it work? Exercises:

∙ Understand the inputs and outputs in machine learning.

∙ Use Quick Draw to discuss training and testing.

∙ Introduce other relevant types of learning: image classification,
audio classification.

20 min Explore audio classification as a learning tool through the PAC webtool.
Exercises:

∙ Number classification: build a model that can distinguish between
students speaking three different numbers.

∙ Free classification: explore PAC, build a unique model that can
distinguish between a variety of words or sounds.

∙ Voice classification: students pair up, train a model to recognize
each student’s voice.

15 min Build and explore the Voice Diary App Inventor application. Exercises:

∙ Export PAC voice classification model for use in the Voice Diary
app.

∙ Download the Voice Diary app, set up the PAC extension using
a custom PAC model.

∙ Test model and application functionality, add custom block logic.

10 min Concluding remarks, questions, post-questionnaire.

Table 7.3: Second PAC workshop lesson plan.

196



Question Mean Range
How confident do you feel about explaining or discussing ma-
chine learning with a non-technical person?

0.55 0-3

How confident do you feel about explaining or discussing ma-
chine learning with a machine learning expert?

0.23 0-2

Table 7.4: Pre-questionnaire means and ranges for students’ responses to how com-
fortable they would be discussing machine learning with others.

Explanation of Machine Learning

To evaluate students’ understanding of machine learning pre- and post- our work-

shops, we asked students how they would explain ML to an ML-naive friend. In

the pre-questionnaire, answers were generally vague and primarily described machine

learning as a method of emulating human intelligence. The majority of students

demonstrated a limited understanding of machine learning and how it worked.

The post-questionnaire posed the same question, with significantly better results.

Responses commonly cited specific components of the ML pipeline, including clas-

sification, training, and testing, which reflected an improved understanding of what

machine learning is and how it works. Every student who either couldn’t define

machine learning or defined it in terms of emulating human intelligence was able to

generally describe the process by which models use data to create representations and

learn from patterns.

Comfort with Discussing Machine Learning

Students rated their own levels of comfort with discussing machine learning with both

non-technical people and with experts on a 0-3 Likert scale, where 0 = No confidence

and 3 = High confidence. In the pre-questionnaire, student responses leaned heavily

towards 0 for both questions (see Table 7.4). These results also reflected the students’

written responses regarding their understanding of ML; a few students had some idea

of what machine learning is, but most had only a cursory understanding of the concept

and would not be comfortable discussing it with others.
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Question Mean Range
How confident do you feel about explaining or discussing ma-
chine learning with a non-technical person?

2 1-3

How confident do you feel about explaining or discussing ma-
chine learning with a machine learning expert?

1.25 0-3

Table 7.5: Post-questionnaire means and ranges for students’ responses to how com-
fortable they would be discussing machine learning with others.

After the workshops, student confidence in discussing machine learning concepts

with non-technical individuals improved, with the mean increasing to 2 (see Ta-

ble 7.5). Every student felt at least slightly confident discussing machine learning

concepts with non-technical individuals, and felt more confident in discussing machine

learning with experts after the workshop. Most students who reported no confidence

discussing with experts felt at least slightly confident after the workshop. During

smaller discussions after the workshops, students expressed that just learning the

basic building blocks of machine learning models helped demystify the “scary term”,

and interacting with accessible workshop tools gave them more confidence to dis-

cuss machine learning concepts. The workshops were successful at improving student

confidence in discussing machine learning for individuals of different backgrounds.

Effectiveness of Tools

Students engaged with a number of public ML tools throughout the six workshops.

These tools included Google’s Quick Draw, Google’s Teachable Machine, the PAC

webtool, and the PAC extension for MIT App Inventor. The post-questionnaire

assessed the usability of these public ML tools by asking students their level of enjoy-

ment for each tool, and any fun points or points of confusion they had experienced.

Overall, student sentiment around the public ML tools was quite positive, with each

tool scoping above a mean of 2 on a 0-3 scale (see Table 7.6).

Many students wrote that the customizability of both PAC and the App Inventor

application were fun to tweak around with, implying that students enjoyed exploring
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Question Mean Range
How much do you agree with the following statement: I en-
joyed using the Quick Draw web tool.

2.75 2-3

How much do you agree with the following statement: I en-
joyed using the Teachable Machine web tool.

2.35 2-3

How much do you agree with the following statement: I en-
joyed using the Personal Audio Classifier web tool.

2.35 2-3

How much do you agree with the following statement: I en-
joyed using the Voice Authentication app.

2.1 1-3

Table 7.6: Student response breakdown for questions related to teaching tool effec-
tiveness.

and building their own applications of audio classification. Some students struggled

with the Voice Authentication app, particularly with exporting the app and achiev-

ing good performance on the mobile devices provided in class. Due to the limited

functionality of student tablets, some models trained using the PAC webtool did not

work as well on the tablets.

PAC Customizability and Improvements

To get further feedback on the PAC interface and how successful students were at

exploring various applications of audio classification, we asked students for the most

confusing aspect of the PAC webtool, the types of audio classification models ex-

plored, and any general feedback on the PAC interface. Many students did not note

any confusing aspects. Three specific pain points include the inability to play back

recorded voice clips when building models, the model export process, and the previ-

ously stated issues with running the Voice Authentication app.

General feedback was positive in nature. Students explicitly mentioned the ease of

use of the interface and the aesthetic elements of the PAC UI. Some students provided

suggestions for new feature additions, including the ability to play back audio after

users record clips. Student responses showed that they were able to quickly grasp the

PAC interface and build impactful audio classification models.
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7.6 Discussion

Both the PAC webtool/PAC extension package and the PIC webtool/PIC extension

package have been important additions to a suite of public ML tools for MIT App

Inventor that bring machine learning to the forefront of K-12 computer science curric-

ula. While both PIC and PAC have received positive feedback from the Boston Latin

Academy workshops and the MIT App Inventor community, much work needs to be

done to improve the usefulness of these tools and make these learning experiences more

accessible. We plan to build on the curricula for the PIC and PAC workshops using

feedback from the workshop surveys to make the lessons more technically involved.

The Boston Latin Academy has also expressed interest in porting the workshops to a

Mobile CSP approved curriculum that would be used in AP Computer Science classes

across the country.
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8

Future Work and Summary of

Contributions

I will end this dissertation by discussing some interesting areas of future work emerg-

ing from my research experiences. These areas are: (1) general education and K-12

initiatives in ML; (2) what types of public ML tools should be created; and (3) some

suggestions for improving technical ML education. I will also summarize the contri-

butions I have made in this thesis.

8.1 Creating more general education and K-12 pro-

grams

There are not enough easily accessible resources for general adult education or K-

12 education in ML. The courses I discussed and analyzed in this thesis are great

examples for these categories and we should help educators and curriculum developers

make more of these courses. The new courses that we create should also relate more

directly to societal needs: (1) these resources should help people understand the world

they live in so that they are able to use ML products effectively and safely, and so

they can identify and critically interpret ML outputs in their environment; (2) we

should teach people to feel comfortable participating in ML advocacy in their local,
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national, and worldwide communities; and (3) these courses should teach people how

to tinker with ML to create personal ML artifacts, which link well to technical courses

and help more people potentially start upon career paths in ML.

From my analysis using the ML Education Framework (see Chapter 5), non-

technical educational programs in general don’t have enough focus on having students

actually create ML artifacts. Scores for technical artifact creation (S3 from my frame-

work) and societal/analytical artifact creation (S4 from my framework) were generally

low for both K-12 and General Adult Courses in ML and AI. From education theory,

these hands-on constructionist experiences are very important to developing under-

standing of ML and self-efficacy in ML, so future curricula should aim to include more

such activities. Of course, the ability to include experiential learning activities with

public ML tools (in particular, for technical ML artifact creation) requires classrooms

to have access to computational devices that are able to run these tools. A variety of

suitable tools for each audience type also needs to be made available to educators.

8.2 Designing better tools that allow more partici-

pation in creating technical and analytical ML

artifacts

We need to design more public ML tools that allow for public participation in creating

both technical and analytical ML artifacts. From my experiences, ML tools meant

for general education need to be created in tandem with carefully designed curricula.

Having technical tool creators collaborate with educators will help both parties con-

sider how the tools will be used in a classroom setting and how to customize them

for specific applications within learning experiences. It is also likely that different

audiences will engage better with different learning experiences. For example, K-12

students and general adult audiences probably care about different types of ML ap-

plications. Public ML tools and curricula may need to be customized for the specific

audience they are aimed towards.
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Figure 8-1: An ethical matrix for YouTube as analyzed by a middle school student
[104].

There has been a lot of recent development of public ML tools for creating technical

ML artifacts, but not enough work in building public ML tools for creating analytical

ML artifacts. An excellent example of an analytical AI course is the AI + Ethics

Curriculum for Middle School from the MIT Media Lab [104], which I analyzed using

my framework (Section 5.2.6). In this course, students work with several paper-and-

pencil tools such as ethical matrices to dive deeply into thinking about ML products

as social, ethical, and technical systems (see Figure 8-1). These activities provide

advanced coverage of S4. Analysis of ML Design Intentions and Results, from the

ML Education Framework.
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Tools such as ethical matrices and stakeholder analyses are great starting points for

building more analytical tools for ML. Perhaps educators, ethicists, and technical ML

developers can work to tailor such tools for specific ML applications and curricula. It

will be interesting to explore if such analytical tools could be linked to or incorporated

within technical tools to more directly support this type of analytical learning.

8.3 Improvements to technical ML education

From my analysis of technical courses using the ML Education Framework (see Chap-

ter 5), they tend to cover relatively little regarding cultural, ethical, and societal con-

siderations for building ML systems. The three items of K3. Bias in ML Systems,

S4. Analysis of ML Design Intentions and Results, and S5. ML Advocacy were very

lightly covered in technical curricula. The coverage of K4. Societal Implications of

ML, also mostly focused on the many pros of machine learning without thoroughly

discussing the difficulties of integrating new ML systems into existing human societies

and processes or the potential differential harms that may be caused by ML systems.

Most technical courses have one or two lectures on topics around fairness, bias, and

responsible design and many courses don’t cover these topics at all.

It is problematic that technical ML courses do not teach students to consider the

whole ML pipeline (i.e. cultural, ethical, and societal perspectives). This needs to

be amended so that the creators of ML technologies are more aware of the impact

of their creations and can incorporate these considerations into the technical process

of creating ML applications. From my experiences with Deep Learning Practicum,

it is not enough to teach bias or fairness as one-off lectures. Students are unlikely to

incorporate these into their own design processes unless they have previously practiced

going through the pipeline in creating ML applications with such considerations in

the past.

Ethicists and educators are starting to research how to modify the ML pipeline to

make this happen [93]. We also need buy-in from tech companies, institutions, and

the people who teach these technical courses. It is important to teach ML engineers
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and developers to become more holistic designers who are more aware of the potential

impact of their creations.

8.4 Summary of Contributions

In this dissertation, I have presented an educational framework for transforming ML

consumers to be ML contributors. The ML Education Framework contains 14 items

in 3 categories: Knowledge (K1. General ML Knowledge, K2. Knowledge of ML

Methods, K3. Bias in ML Systems, K4. Societal Implications of ML), Skills (S1.

ML Problem Scoping, S2. ML Project Planning, S3. Creating ML Artifacts, S4.

Analysis of ML Design Intentions & Results, S5. ML Advocacy, S6. Independent

Out-of-Class Learning), and Attitudes (A1. Interest, A2. Identity & Community,

A3. Self-Efficacy, A4. Persistence). This framework can be used in creating new

ML curricula, in analyzing the results of ML interventions, and in situating support

tools within ML education for students of a variety of backgrounds and levels. With

respect to this framework:

∙ I designed and taught a semester long college course for ML tinkerers at Mas-

sachusetts Institute of Technology called 6.S198: Deep Learning Practicum.

The course was project-based and taught in a laboratory setting through the

Use-Modify-Create framework. Deep Learning Practicum focused on transfer

learning techniques for deep learning, which helped students with little to no

prior knowledge of programming or ML gain self-efficacy in creating personal

ML artifacts. It transitioned students from using non-programming ML tools

for hands-on exploration of ML applications to using TensorFlow.js to create

ML applications.

∙ I created a Curriculum Rubric for analyzing how a course addresses each element

of the ML Education Framework from a 0-4 scale. The Curriculum Rubric can

be used by curriculum developers to determine which elements of the framework

they wish to focus on at the beginning of the design process, by educators
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to evaluate how well their curriculum covers elements of the ML education

framework, and by educators to choose which curricula and workshops they

want to use for their specific goals. I analyzed a set of 6 technical, general, and

K-12 ML/AI courses by others and provided insights into general trends in ML

education.

∙ I created Personal Image Classifier (PIC) and Personal Audio Classifier (PAC),

two public ML webtools for image and audio classification that can be directly

used in creating mobile applications with MIT App Inventor. These tools use

transfer learning in the browser to allow students as young as middle school

train and test personalized image or audio classification models. These models

can then be downloaded for use in MIT App Inventor, a blocks-based mobile ap-

plication creation platform that allows people with no programming experience

to quickly and easily create powerful mobile applications.

∙ I offered recommendations for ML education research in creating more general

education and K-12 programs that target societal needs, in designing better

public ML tools that allow for more participation in creating technical and

analytical ML artifacts, and in including societal, ethical, and cultural consid-

erations within the ML pipeline to improve technical ML education to train

more holistic ML engineers and researchers.
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Appendix A

Curriculum Rubric - ML Education

Framework

A live version of the curriculum rubric for the ML Education Framework can be found

at the reference linked in [69]. The below rubric has been updated as of August 28,

2020.
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